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ABSTRACT

Non-ergodic ground-motionmodels (NGMMs) can potentially reduce the ground-motion aleatory

variability significantly, and dramatically impact the seismic hazard, especially at large return

periods which is important for critical infrastructure. This reduction in aleatory variability is

accompanied by epistemic uncertainty in regions with sparse recordings or a systematic shift in

the median ground motion in regions with dense recordings. This report summarizes NGMMs

methodologies, commonly-used software platforms for NGMMs, and provides instructions for

users of such software platforms. Gaussian Process Regression (GPR) – with spatially varying

coefficients for modeling the source and site systematic effects and cell-specific anelastic

attenuation for modeling the systematic path effects – is a flexible and robust modeling technique

for developing NGMMs, which is elaborated in this report. As part of this work, open-source

computer tools and instructions for users have been developed to show the steps toward

developing NGMMs in the GPR framework. Two commonly-used statistical software packages,

STAN and INLA, are used and compared. The developed software packages were verified

against synthetic data sets with known non-ergodic effects, and different implementations

of the developed software were evaluated for scalability, universality, precision, and model

complexity. The computer codes developed as part of this report and the synthetic datesets used

for the verification process are made available to the public through the UCLA NHR3 Git-hub

repository (https://github.com/NHR3-UCLA/ngmm_tools). The Docker image to assist in
the cross-platform compatibility of the provided tools can be built using the Git-hub repository

(https://github.com/NHR3-UCLA/docker-ngmm_tools). The metadata and generated

synthetic datasets used in the verification exercises can be accessed through the Products Section

in https://www.risksciences.ucla.edu/nhr3/ngmm.
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1 INTRODUCTION

1.1 OVERVIEW

Traditionally, due to the small size of available regional earthquake datasets, ground-motion

models (GMMs) are developed under the ergodic assumption (Anderson and Brune, 1999),

which states that the ground-motion variability in space (i.e., between many stations from few

earthquakes) is equal to the ground-motion variability in time (i.e., at one station from many

earthquakes). This assumption has been convenient as it allows to combine data from similar

tectonic environments around the world to develop a model for scaling with magnitude, distance,

and site condition. The median and aleatory variability of a GMM are assumed to be applicable

to any location within the broad tectonic category.

The traditional approach of developing ergodic GMMs leads to a stable global average of the

ground motion for a given scenario, but a large aleatory variability between an observation

and the global average. With the large increase in the number of ground-motion instruments

and recordings over the last decade, it has become clear that there are significant systematic

differences in ground motion based on the location of the site and the source. As a result, the

ergodic GMMs generally may not work well for a specific site/source location. This has prompted

the development of non-ergodic ground-motion models in which these location-specific effects

are modeled explicitly, which reduces the aleatory variability. The uncertainty in the estimate

of the site-specific effects is then part of the epistemic uncertainty. As a general classification,

uncertainties are treated as epistemic if they are expected to be reduced by gathering more data.

Variabilities are treated as aleatory if the increase of data is not expected to systematically reduce

their range (Der Kiureghian and Ditlevsen, 2009).

An important difference between the application of statistics in GMMs as compared tomost other

fields is the use of constraints to ensure proper extrapolation. In other fields, the assumption is

that the key behaviors are represented by the available data. Thus, the goal of statistics is to find

the trends in the data. However, the problem ismore complicated in earthquakeGMMsas they are

often applied to earthquake scenarios outside the range that is well constrained by the data (i.e.,

it is an extrapolation problem). For instance, Figure 1.1 shows the magnitude-distance distribution

of the California subset of the NGA-West2 database (Ancheta et al., 2014), which is often used

for the development of GMMs for California. In this dataset, the magnitudes range from 3 to 7.2,
with the majority of the events being betweenmagnitude 3 and 5, and the distance ranges from 1
to 400km, with the majority of the recordings being between 20 and 200km. However, in PSHA,

1



Figure 1.1. Magnitude-distance distribution of the California subset of the NGAWest2 dataset.

large-magnitude and short-distance scenarios often control the hazard. For example, in the San

Francisco Bay Area, it is common to have faults that are less than 10km away from a site and are

capable of producing larger thanM7 earthquakes. It is the difference between the range of the
scenarios that are used to derive a GMM and the range of scenarios on which a GMM is applied

that makes the proper extrapolation of the ground motion an important aspect of a GMM.

This report aims to review NGMM modeling. Our emphasis is on Gaussian process regression as

a powerful method for developing non-ergodic ground-motion models and on providing software

tools for the development and application of NGMMs. Potential modelers are encouraged to treat

the provided computer tools as building blocks and modify them to fit their project needs. For

example, users can adjust the prior distributions and modify the NGMM functional form as they

wish.

The software accompanying this report can be found at the UCLA NHR3 Git-hub repository (https:
//github.com/NHR3-UCLA/ngmm_tools). The Docker image to assist in the cross-platform
instalation of the provided tools can be built using the Git-hub repository (https://github.com/
NHR3-UCLA/docker-ngmm_tools). Themetadata and generated synthetic datasets used in the
verification exercises can be accessed through the Products Section in https://www.risksciences.
ucla.edu/nhr3/ngmm.

1.2 ORGANIZATION

This report is organized into the following chapters:

• Chapter 2 discusses the formulation of non-ergodic ground-motionmodels as a Gaussian

Process (GP). It starts by presenting themethodologies used in GMMpractice to estimate

the components (coefficients and aleatory standard deviations) of an ergodic GMM,

how these methodologies are extended to estimate the components of a partially

non-ergodic GMM, and how they are modified to estimate the components of a fully

2
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non-ergodic GMM. In particular, Section 2.4 presents: (i) the components of a GP

regression, (ii) commonly used covariance functions for modeling the spatial variability

of the non-ergodic effects, (iii) the formulation of the cell-specific anelastic attenuation

as a GP, and (iv) the conditional prediction of non-ergodic ground-motions on existing

records.

• Chapter 3 summarizes the NGMM functional forms and kernel function options in

the developed tools for the non-ergodic and anelastic attenuation coefficients. Three

types of non-ergodic models can be developed using the provided tools. Type1 NGMM

includes an intercept and three spatially varying constants to model the systematic

source and site effects. Type2 NGMM, in addition to the previous terms, includes the

cell-specific anelastic attenuation to capture a part of the systematic path effects. Lastly,

type3 NGMM, adds a spatially varying geometrical spreading and VS30 scaling to the
regression.

• Chapter 4 summarizes the input files needed to run regression tools. The regression input

files are the ground-motion flatfile, the cell information flatfile, and the cell-path length

flatfile. A computer script for estimating the cell-path segment lengths is also presented.

• Chapter 5 presents the synthetic datasets used to verify the GMM regression tools.

Section 5.1 describes the NGAWest2 CA and NGAWest3* CA metadata used as the basis

for the development of the synthetic datasets. Section 5.2 describes the methodology

and different types of synthetic datasets generated for the verification exercise.

• Chapter 6 and Chapter 7 present the developed tools for developing the non-ergodic

ground-motion models using the statistical software platforms STAN and INLA. In both

cases, a general overview of the statistical environments is presented first, the computer

codes for estimating the type1 NGMM terms are then explained, and the modifications

for the type2 and type3 NGMM are summarized in the end.

• Chapter 8 presents the application of the developed NGMM tools on a CyberShake

simulation dataset and summarizes the lessons learned from this test. The comparison

showed that the developed tools can effectively capture the site effects. The source

effects are not accurately captured due to the self-similar assumption for the CyberShake

events. Amore sophisticated representation of wave propagation in NGMMs is necessary

to recover the anelastic attenuation path effects.

• Chapter 9 summarizes the proposed notation used in this report for the development and

application of NGMMs.

• Chapter 10 summarizes the regression methodology and presented tools as well as

directions for future research.

• Appendix A summarizes the links for the different electronic supplements.
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2 OVERVIEW OF DEVELOPMENT OF ERGODIC
AND NON-ERGODIC GMMS

Contents of this chapter are primarily from the Lavrentiadis, G., Abrahamson, N.A.,

Nicolas, K.M., Bozorgnia, Y., Goulet, C.A., Babič, A., Macedo, J., Dolšek, M., Gregor,

N., Kottke, A.R., Lacour, M. ... (2022) “Overview and Introduction to Development of

Non-Ergodic Earthquake Ground-Motion Models” Bulletin of Earthquake Engineering

journal article.

This chapter serves as an overview and introduction to the development of non-ergodic GMMs,

with an emphasis on the varying coefficient models (VCM) developed with Gaussian Processes

(GPs) regression. The combination of a VCMGMMwith the cell-specific anelastic attenuation and

considerations regarding the extrapolation of non-ergodic GMMs are also discussed. An updated

notation for key elements of non-ergodic GMMs is also presented.

2.1 PROPOSED NOTATION

The proposed notation is intended to help the reader understand the role of different terms in a

GMM and facilitate the comparison of the different non-ergodic models presented in this report.

The model variables are categorized into two groups: the model parameters (~θ) and model
hyperparameters (~θhyp). The ~θ includes the ergodic and non-ergodic terms that directly affect the

ground motion, while ~θhyp includes the set of variables that control the behavior of the ergodic
and non-ergodic terms and have an indirect effect on the ground motion. An example of a model

parameter is the coefficient for the linear magnitude term, and an example of a hyperparameter

is the between-event standard deviation.

The ergodic coefficients of the GMM are denoted as ci where i is the number of the ergodic term,
and the non-ergodic coefficients are denoted as ci,X or δci,X . The subscript X (subscript after

the comma) can be the letters E, P , or S depending on whether the non-ergodic coefficient in
question is intended to capture systematic effects related to the source (earthquake), path, or

site. The notation δ is used to differentiate between non-ergodic coefficients that have a zero
mean and act as adjustments to ergodic coefficients, and stand-alone non-ergodic coefficients that

encompass both the average scaling and the systematic effects. For instance, the non-ergodic term

δc1,E acts on top of c1 to capture the systematic effects related to the source. Alternatively, the
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same behaviour can bemodeled with c1,E which is equal to the sum of the ergodic coefficient and
the non-ergodic adjustment (c1,E = c1 + δc1,E). The non-ergodic adjustments, δci,X , are typically
used when a non-ergodic GMM is developed with an ergodic GMM as a ”backbone” model, in

which case the non-ergodic adjustments are estimated based on the total ergodic residuals. For

example, Kuehn et al. (2019) and Lavrentiadis et al. (2021) are non-ergodic GMMs derived with

this approach. The non-ergodic coefficients, ci,X , are used when a non-ergodic GMM is directly

estimated with the log of the ground motion as a response variable as in the case of Landwehr

et al. (2016).

Many of the non-ergodic GMMs in this issue used the cell-specific anelastic attenuation, first

proposed by Dawood and Rodriguez-Marek (2013), to model the systematic path effects. In the

proposed notation, the vector of attenuation coefficients of all the cells is denoted as ~cca,P , and

cell path segments are denoted as∆~R. The total anelastic attenuation is equal to ~cca,P ·∆~R.

The terms δL2L, δP2P , and δS2S introduced by Al Atik et al. (2010) are used here to describe
the total non-ergodic effects related to the source (they used L for location), path, and site,

respectively. For instance, if the constant c1 is modified by two site adjustments, δc1a,S and
δc1b,S , to express the systematic site effects, then δS2S is equal to δc1a,S + δc1b,S . Similarly,
if the non-ergodic adjustment to the geometrical spreading coefficient, δc3,P , and the cell-
specific anelastic attenuation, ~cca,P are used to express the systematic path effects, then

δP2P = ln(R)δc3,P + ~cca,P · ∆~R − c7R, where, in this example, c7 is the ergodic anelastic
attenuation coefficient. The c7R term is subtracted from the median prediction from the GMM

to remove the systematic effects that are included in the cell-specific anelastic attenuation.

The scale and correlation length which control the spatial distribution of the non-ergodic terms

are denoted as ωi,X and `i,X . An in-depth discussion on modeling the non-ergodic terms as GPs,
where ωi,X and `i,X are defined, is provided in section 2.4.1. In keeping with the Al Atik et al.

(2010) notation, the total epistemic uncertainty of the non-ergodic source, path, and site effects

are denoted as τL2L, φP2P , and φS2S . Expanding from the example above, if ω1a,S and ω1b,S

correspond to the scales of δc1a,S and δc1b,S , then the epistemic uncertainty of the site effects
is φ2

S2S = ω2
1a,S + ω2

1b,S .

The response variable of the regression is denoted as y. For a pseudo-spectral acceleration (PSA)
or Effective Amplitude Spectrum (EAS) GMM, y is equal to ln(PSA) or ln(EAS).

The location of the source, site, etc. are required in the non-ergodic GMMs included in this issue

to define the spatially-varying non-ergodic terms. The coordinates of the earthquake, site, and

mid-point between the source and site are denoted as: tE , tS , tMP , respectively. The definition

of the location of the earthquake, tE (e.g. epicenter, the closest point to the site, etc.) is defined
in each study. Similarly, the cell coordinates are denoted as tC ; the exact point of the cell (e.g.
center, lower left corner, etc.) to which tC corresponds is defined in each study.

The star superscript is used to denote the new scenarios and values of non-ergodic coefficients

predicted for the new scenarios. For instance, t∗E corresponds to the source locations of the new
scenarios where systematic source effects will be predicted, and δc∗i,E(t

∗
E) corresponds to the non-

ergodic source adjustments of these scenarios.

A list of abbreviations and a glossary of all terms used in this report are summarized on Chapter 9.
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2.2 DEVELOPMENT OF ERGODIC GROUND-MOTION MODELS

A typical GMM has a model for the base magnitude, distance, and linear site scaling, and may

includemore complicated features for non-linear site response, hanging-wall effects, basin effects,

etc. For example, the median for the ASK14 (Abrahamson et al., 2014) GMM has the following

form:

ferg(M,Rrup, VS30, ...) =c1 + c2M + c3(8.5−M)2 + (c4 + c5M)ln(Rrup + c6) + c7R

+ c8FRV + c9FN + c10 ln(VS30/Vref )
+ fNL(VS30, µ1100) + fHW (M,Rrup, Rx, Dip)

(2.1)

where ferg is the ergodic median ground-motion, ci are the ergodic scaling coefficients, FRV and

FN are the reverse and normal fault scaling factors, fNL is the non-linear site effects scaling,

fHW is the hanging wall scaling, M is the moment magnitude, Rrup is the closest point on the

rupture-to-site distance,Rx is the horizontal distance from the top edge of the rupture measured

perpendicular to the fault strike, and VS30 is the time-average shear wave velocity at the top 30m.

A key aspect of GMMsused for seismic hazard studies is that in engineering applications, they need

to be extrapolated outside the data range. Although a GMM is developed through a regression

analysis, constraints are often imposed on the coefficients to ensure that the GMM extrapolates

consistently with a physical-based scaling.

Because the recordings for a single earthquake are correlated, it is common to use amixed-effects

regression when developing GMMs:

yes = f(M,Rrup, VS30, ...) + δWes + δBe (2.2)

in which the left-hand-side is the observed ground motion and δBe is the between-event aleatory

term for the eth earthquake and δWes is the within-event aleatory term for the sth station and
from the eth earthquake. δBe and δWes are assumed to be normally distributed with zero mean

and τ and φ standard deviations, respectively.

2.2.1 Maximum Likelihood Estimation

In GMM development, the maximum likelihood estimation (MLE) is often used to obtain point

estimates of the GMM coefficients (fixed terms) and standard deviations of the aleatory terms

(random terms). In the past, the procedure outlined in Abrahamson and Youngs (1992) was

commonly used to estimate the mixed-effect terms. More recently, statistical packages such as

LME4 (Bates et al., 2015) in the statistical software R (R Core Team, 2020) are used to obtain point

estimates and significance test statistics of the mixed terms.

In MLE, the parameters of the model are estimated by maximizing the log-likelihood function, or

more commonly by minimizing the negative of the log-likelihood function. The log-likelihood is a

measure of how likely it is to observe the data given the model parameters. With the assumption

that δBe and δWes independent with no spatial correlation and that they are normally distributed,

the log-likelihood function is given by:

ln L =
N

2
ln(2π)− 1

2
ln |C| − 1

2
(y − µ)TC−1(y − µ) (2.3)
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and the covariance matrix is given by:

C =φ2IN + τ 2ΣNe
i=11ni

=



φ2 + τ 2 τ 2 τ 2

τ 2 φ2 + τ 2 τ 2

τ 2 τ 2 φ2 + τ 2
0

φ2 + τ 2 τ 2

τ 2 φ2 + τ 2

0 φ2 + τ 2 τ 2

τ 2 φ2 + τ 2


(2.4)

where IN is the identity matrix of size N , which is the total number of recordings, 1ni
is a matrix

of ones, Ne is the number of events, ni is the number of recordings of the i
th event, and µ is the

mean predicted value.

In this approach, assuming that all recordings of the same earthquake are grouped together, the

covariance matrix has a simple block diagonal form. The diagonal elements of C are equal to

τ 2 + φ2, the off-diagonal elements that are associated with recordings of the same earthquake

are equal to τ 2, and the remaining elements are equal to zero.

Maximum likelihood regressions are computationally inexpensive, as there are efficient

methods to minimize the negative of the log-likelihood (e.g. Bound Optimization BY Quadratic

Approximation (BOBYQA), Powell (2009)). The most involved step at each iteration is to compute

the inverse of the covariance matrix; however, due to its block diagonal and sparse nature, the

process is computationally efficient to perform.

2.2.2 Other Methods for Ergodic Models

Ergodic GMMs have also been developed using Bayesian regression. Bayesian models have been

used successfully in the development of a FAS GMM for Mexico City (Ordaz et al., 1994), in

deriving a PSA GMM that includes the correlation between spectral periods and the correlation

between theGMMcoefficients (Arroyo andOrdaz, 2010a,b), in capturing the uncertainty ofmodel

parameters, such as VS30 (Kuehn and Abrahamson, 2018), and in the development of ergodic
GMMs with truncated data (Kuehn et al., 2020). More closely related to the non-ergodic GMMs,

Hermkes et al. (2014) used a Bayesian GP regression to derive a non-parametric ergodic GMM for

shallow crustal events. Bayesian regression has a higher computational cost than MLE which is

why it is less commonly used in GMM development.

GMMs have also been derived through artificial neural networks (ANNs). Derras et al. (2014)

proposed an ANN that partitions the residuals into within-event and between-event terms and

used it to develop an ergodic GMM for Europe. Withers et al. (2020) applied an ANN to develop

an ergodic GMM with ground motions from the CyberShake simulations for Southern California.

This is a promising approach, especially for large databases, as the method scales well to many

GBs of data that are frequently produced from simulation outputs (> 108 records). However, extra
prudence is required as the modeler does not have direct control over the model behavior (such

as interdependency among input terms) and which may limit the accurate extrapolation outside
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the range of training predictor variables. These concerns can be mitigated by applying physics-

based constraints on the model or by augmenting the trained synthetic databases with empirical

records but requires additional validation to ensure that conditions within the synthetic ground

motions are consistent with empirical records and do not introduce any inherent bias within the

data.

2.3 DEVELOPMENT OF PARTIALLY NON-ERGODIC GROUND-MOTION
MODELS

The term “partially non-ergodic” has sometimes been used for GMMs that include mean regional

differences. Here, we use the term only for GMMs that include differences due to the location

of the site and/or the location of the source, not for average differences between broad regions.

One such partially non-ergodic GMM approach consists of capturing systematic (i.e., site-specific)

site effects (Stewart et al., 2017). Every site has its own velocity profile which leads to a repeatable

site amplification relative to the reference profile of a GMM for the same VS30 (Lavrentiadis, 2021).
This amplification is the same for all ground motions at the site of interest and is not applicable to

different sites. However, in an ergodic model, any misfit between a ground-motion observation

and the median ground-motion estimate is considered aleatory in nature (i.e. random). That is,

ergodic GMMs are based on an assumption that the range of site amplification between different

sites with the same VS30 is the same as the range of site amplification at the site of interest. It
is the goal of partially non-ergodic GMM to properly categorize the systematic site-specific site

amplification effects and remove them from the aleatory terms.

In the partially non-ergodic model, the ergodic within-event residual is partitioned into a site-

specific site term and the new remaining within-event within-site residual. Using the Al Atik et al.

(2010) notation:

δWes = δS2Ss + δWSes (2.5)

δS2Ss term represents the systematic difference between the site amplification at the s
th site and

the site amplification in the ergodic GMM.

The parameters of a partially non-ergodic GMM can be formulated as a mixed-effects model with

three random terms (δBe, δWSes, and δS2Ss):

yes = ferg(M,R, VS30, ...) + δS2Ss + δBe + δWSes (2.6)

δBe, δWSes, δS2Ss are assumed to be normally distributed with zero means and τ0, φSS , and

φS2S standard deviations, respectively. This leads to a more complicated covariance matrix with

more non-zero off-diagonal terms:

C = φ2
SSIN + φ2

S2SΣ
Ns
i=11ni

+ τ 20Σ
Ne
i=11ni

=


φ2
SS + φ2

S2S + τ 20 τ 20 φ2
S2S 0

τ 20 φ2
SS + φ2

S2S + τ 20 0 φ2
S2S

φ2
S2S 0 φ2

SS + φ2
S2S + τ 20 τ 20

0 φ2
S2S τ 20 φ2

SS + φ2
S2S + τ 20

 (2.7)
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The main difference to the covariance matrix of the ergodic GMM (Equation 2.4) is that the

elements that are associated with the same station include the φ2
S2S variance. In this framework,√

τ 20 + φ2
SS is the aleatory variability of the GMM, and, φS2S is the epistemic uncertainty of the

site term at a site without site-specific data to constrain the site term.

Alternatively, δS2Ss can be estimated directly by partitioning the ergodic within-event residuals,

δWes, into δS2Ss and δWSes. This approach is expected to give similar results, but it can be

problematic if some of the systematic site effects have beenmapped into the ergodic event terms.

The δS2Ss of such a partially non-ergodic GMM is spatially independent. This is a contrast with

the GP-based approach (Section 2.4.1), which allows for δS2Ss to be spatially correlated.

2.4 DEVELOPMENT OF NON-ERGODIC GROUND-MOTION MODELS

The fully non-ergodic GMM extends the partially non-ergodic GMM to account for systematic

and repeatable source and path effects in addition to the systematic site effects. For that, two

additional non-ergodic terms are added:

yes = ferg(M,Rrup, VS30, ...) + δS2Ss + δP2Pes + δL2Le + δB0
e + δWS0

es (2.8)

The δL2Le term is the systematic source-specific adjustment to the median ground motion in the

base ergodic model. It is related to repeatable effects in the release of seismic energy from a

source in a region. For instance, δL2Le will be positive if the average stress drop of earthquakes

in a region (i.e. fault system) is systematically larger than the global average. Supporting this

argument, Trugman and Shearer (2018) found a strong correlation between the stress drop and

between-event term of an ergodic GMM. Similarly, the δP2Pes term represents the repeatable

difference in the propagation of the seismic waves between a source and site and the ergodic

GMM. The δP2Pes term will be positive if the attenuation in a geographical region is less than the

global average.

The non-ergodic terms δL2Le and δP2Pes are assumed to be normally distributed with zero

means and τL2L and φP2P standard deviation, respectively. The remaining aleatory terms, δB
0
e

and δWS0
es, are assumed to be normally distributed with zero means and τ0 and φ0 standard

deviations.

The different GMM paradigms (e.g. ergodic, partially non-ergodic, non-ergodic GMMs)

should have similar size total aleatory variability and epistemic uncertainty:
√
φ2 + τ 2 ≈√

φ2
S2S + φ2

SS + τ 2 ≈
√
τ 2L2L + φ2

P2P + φ2
S2S + φ2

0 + τ 20 as there is no change in the amount of
information – what is different between the three approaches is how the provided information

is treated (i.e. repeatable or random). This is a useful check for ensuring that the epistemic

uncertainty and aleatory variability of a GMM are not overestimated or underestimated.

However, it should be noted that the size of aleatory variability and epistemic uncertainty also

depends on the modeling approach. For example, a single-station partially non-ergodic GMM,

such as SWUS15 (Abrahamson et al., 2015) has, largely, a constant epistemic uncertainty, whereas,

a non-ergodic GMMdeveloped as GP has a scenario-dependent epistemic uncertainty. Therefore,

this check is primarily applicable at the center of the ground motion data, not at the model

extrapolation.
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Lin et al. (2011) estimated the standard deviations for all three non-ergodic terms using ground-

motion data from Taiwan. The δS2Ss was modeled as a random term based on the site ID, and

δL2Le was modeled as a spatially correlated random variable based on the site location using

standard geostatistics. A more complex spatial correlation model was used for δP2Pes, as it

depends both on the source and site location. For a single site, the δP2Pes correlation is stronger

if the earthquakes are closer together, as the seismic waves travel through the same part of the

crust. The systematic path effects were found to result in the largest reduction of the aleatory

variability followed by the systematic site effects. Overall, including all three effects led to about

a 40% reduction in the total aleatory standard deviation compared to the ergodic GMM.

In the previous formulation, the non-ergodic effects were modeled with normal distributions,

which may not always be appropriate, particularly, for the path terms; for similar variations in the

earth’s crust, a far apart source-site pair will have more pronounced path effects than a source-

site pair that is closer together. The distance dependence of the path effects is not significant if all

records in the dataset have similar rupture distances, but it can be important if the range of Rrup

is large.

An alternative option is to describe the non-ergodic GMM as a Varying coefficient model (VCM).

In this approach, the non-ergodic terms are scaled by different model variables (e.g. Rrup, VS30)
which provides a more flexible framework to model the systematic effects. More details on the

development of non-ergodic GMMs as GP VCMs are provided in the next section.

2.4.1 Gaussian Process Models

The non-ergodic GMMs developed with the tools presented in this report are classified as VCM,

as the non-ergodic terms are dependent on the earthquake and site locations in addition to any

other input parameters (e.g. VS30):

yes =fnerg(M,Rrup, VS30, ..., tS, tE) + δB0
e + δWS0

es

=ferg(M,Rrup, VS30, ...) + δS2S(VS30, ..., tS) + δP2P (Rrup, ..., tE, tS, )

+ δL2L(M, ..., tE) + δB0
e + δWS0

es

(2.9)

with fnerg corresponding to the median non-ergodic ground motion for a particular pair of source
and site, and ferg corresponding to the median ergodic ground motion (i.e. the median ground
motion for all sources and sites). The systematic source term, δL2L, is modeled as a function of
the earthquake coordinates (tE), and the systematic site term, δS2S, is modeled as a function of
the site coordinates (tS). The systematic path term, δP2P , is more complex as it depends both on
the earthquake and site location. The cell-specific anelastic attenuation which is used to capture

the systematic path effects is described in Section 2.4.1.3.

At first sight, the development of a non-ergodic VCM GMM may seem futile due to the large

number of non-ergodic terms that need to be estimated. If the state of California is broken into

a 5 × 5 km grid, there would be approximately 20,000 grid points and so, at minimum, 60,000
non-ergodic coefficients that would need to be estimated; that is the simplest non-ergodic model

where the systematic source, site, and path effects are captured with one coefficient each. It is

unfeasible to derive such a model with the existing datasets as they contain, at best, in the order
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of 10,000 recordings. Fortunately, this is not a problem in VCM due to the spatial correlation

structure imposed on the non-ergodic coefficients.

In the statistical approaches described so far, the GMM coefficients are treated as fixed

parameters. That is, every coefficient has a single value which is estimated by the MLE or another

frequentist approach. In a GMM that is developed as a VCM GP, the model coefficients are

treated as random variables that are assumed to follow Normal (Gaussian) distributions. The

choice of the mean and covariance function of these distributions is what controls the behavior

of each coefficient; for instance, whether a coefficient is constant over a domain, whether it

varies continuously on some finite length scale, or whether it is spatially independent (i.e. the

value of the coefficient at some location is independent of the value of the coefficient at some

other location). In this sense, in a GP regression, the GMM coefficients are modeled similarly

to the aleatory terms in the mixed-effects regression (Section 2.2.1). It is these constraints on

the GMM coefficients imposed by the covariance function that make the development of a

non-ergodic VCM GP GMM tractable. Due to this, the non-ergodic GMM coefficients do not have

to be estimated directly; instead, only the hyperparameters that control the distributions of the

non-ergodic terms need to be estimated by the regression. With the current size of datasets, the

number of hyperparameters is typically about 10.

Furthermore, this formulation leads to a scenario-dependent epistemic uncertainty that is more

appropriate than the constant epistemic uncertainty assumed in earlier studies. In a VCM GP

GMM, the non-ergodic coefficients have a constant epistemic uncertainty, but the epistemic

uncertainty of the ground motion is scaled by the GMM input variables. For example, consider

a non-ergodic GMM based on the base model (Equation 2.1) where the systematic path effects

are modeled with a spatially varying geometrical spreading coefficient that is a function of the

earthquake coordinates (c4,E(tE)). In this case, the epistemic uncertainty of c4,E(tE) will be
equal to ψ4,E(tE) and the epistemic uncertainty of the ground motion due to the systematic
path effects will be equal to φP2P = ψ4,E(tE) ln(R + c6). This results in a distance-dependent
epistemic uncertainty, the epistemic uncertainty is higher for sites farther from the source, which

is different from the φP2P values of Lin et al. (2011) which are independent of the source-to-site

distance.

GP is a particular case of a hierarchical Bayesian model as it is expressed on multiple levels. At

the base level are the GMM coefficients and aleatory terms which have a direct impact on the

response variable y and are defined in terms of some distributions; the variables that constitute
this level are called model parameters (~θ). At the next level is the set of variables that control
the distributions of θ. The variables of the upper level are called model hyperparameters (~θhyp),
which in turn could be defined in terms of some other distributions or they could be fixed. As

an example, in this context, φ0 and τ0 are hyperparameters that control the distributions of the
parameters: δWS0

es and δB
0
e .

There are two general approaches for developing a non-ergodic GMM with a GP regression. In

the first approach, which was followed by Landwehr et al. (2016), all the coefficients, ergodic and

non-ergodic, were modeled as GPs. In that case, the non-ergodic GMM is developed from the

beginning and the response variable is typically the log of the ground-motion parameter (e.g.

log(PSA)). An alternative approach, which was followed by Kuehn (ress) and Lavrentiadis et al.
(2021), is to model the non-ergodic coefficients or non-ergodic coefficient adjustments as GPs
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and keep the ergodic terms fixed. Here, the non-ergodic GMM is based on an existing ergodic

GMM and the response variable is the ergodic residual. An advantage of this approach is that

the extrapolation to large magnitudes and short distances from the underlying ergodic GMM is

preserved in the non-ergodic GMM.

The remaining parts of this section summarize the different elements of the VCM GP GMM

development: Bayesian regression, covariance functions of the prior distributions commonly

used in VCMGP GMM, cell-specific anelastic attenuation, prediction of themedian, and epistemic

uncertainty of the non-ergodic coefficients and median ground motion at new locations.

2.4.1.1 Bayesian Regression

In Bayesian statistics, the uncertainty of the model parameters and hyperparameters, ~θ and ~θhyp,

before observing the data is expressed by the prior distribution (p(~θ, ~θhyp)). The uncertainty of ~θ

and ~θhyp is updated based on the ground-motion observations, ~y, and ground-motion parameters
(such as M , Rrup, VS30, etc., collectively for all records noted as ~x) to produce the posterior

distribution (p(~θ, ~θhyp|~y, ~x)). The Bayes theorem provides the means for this calculation:

p(~θ, ~θhyp|~y, ~x) =
L(~θ, ~θhyp)p(~θ, ~θhyp)

p(~y, ~x)
(2.10)

Often, the normalizing distribution p(~y, ~x) is omitted for computational efficiency as it is not
required to sample or compute the maximum of the posterior. In this case the posterior

distribution is expressed as:

p(~θ, ~θhyp|~y, ~x) ∝ L(~θ, ~θhyp)p(~θ, ~θhyp) (2.11)

The influence of the ground-motion data in the posterior distribution is expressed through the

likelihood function (L(~θ, ~θhyp)) — it corresponds to the likelihood (i.e probability) of observing the

data given some values for ~θ and ~θhyp. The likelihood for a single observation can be estimated
with the functional form of the GMM as:

L(~θ, ~θhyp) = pdf(~y|fnerg(~x, ~θ, ~θhyp) + δ ~Be, φ
2
0) (2.12)

Because all correlated terms (i.e. non-ergodic terms and between event residuals) are included in

the mean, the misfit: y− (fnerg(x, ~θ, ~θhyp)+δ ~Be), which corresponds to δWS0
es, is independently

and identically distributed, thus, the joint likelihood of all observations is the product of the

likelihoods of individual observations:

L(~θ, ~θhyp) = pdf(~y|fnerg(~x, ~θ, ~θhyp) + δ ~Be, φ
2
0)

= Πne
e=1Π

ns
s=1pdf(yes|fnerg(xes, ~θ, ~θhyp) + δ ~Be, φ

2
0)

(2.13)

improving computational efficiency. The likelihood function is written in vector notation in the

first line and expanded in the second line of Equation 2.13.

The prior distributions express our knowledge and beliefs about ~θ and ~θhyp. They may come
from prior experience in building non-ergodic GMMs or based on a desired model behavior (i.e.
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penalize model complexity if not supported by the data (Simpson et al., 2017)). When there is

little information about ~θ and ~θhyp, weakly informative priors can be used. These are chosen as
wide priors distributions so that the posterior distribution is primarily controlled by the likelihood

function.

The prior distributions of the non-ergodic effects are spatially uniform with zero means and large

standard deviations because prior to interrogating the ground-motion data, the systematic effects

are unknown. With the aid of the likelihood function and ground-motion data, the non-ergodic

effects can be estimated close to stations and past earthquake locations. This results in posterior

distributions that are spatially varyingwith non-zeromeans and smaller standard deviationswhere

the non-ergodic effects have been estimated. Zero posterior standard deviations would imply that

the non-ergodic effects are known with absolute certainty.

Historically, Bayesian inference has seen limited use due to its high computational cost compared

to point-estimate inferencewithMLE. However, in recent years, with the increase in computational

speed, Bayesianmodels have been gainingwider adoption. There are threemain computationally-

tractable approaches to obtain the posterior distributions of complex models that do not have

analytical solutions; they are summarized below.

The maximum a posteriori (MAP) approach finds the values of ~θ and ~θhyp that correspond to the
mode of the posterior. The posterior distribution is proportional to the product of the likelihood

function and the prior distribution (Equation 2.11). MAP can be found by minimizing the negative

of this product, which can be numerically computed easily with gradient-based methods. In this

sense, MAP is equivalent to a penalized MLE where the prior distribution acts as a regularization

on the likelihood function. MAP is computationally faster than the other numerical solutions

of Bayesian models, but its main shortcoming is that it provides a point estimate not the entire

posterior distribution; thus, the uncertainty of the model cannot be assessed. The GPML toolbox

(Rasmussen and Nickisch, 2010) available in Matlab and Octave provides such MAP estimates for

Gaussian Process models.

The Markov Chain Monte Carlo (MCMC) approach generates samples from the posterior

distributions that are used in the inference of ~θ and ~θhyp. This approach is able to recreate the
full posterior distribution, but it is computationally slow. An in-depth review of this method can

be found at Brooks et al. (2011). Widely used statistical software that have implemented this

approach are: JAGS (Plummer, 2003), BUGS (Lunn et al., 2009), and STAN (Stan Development

Team, 2022) for general Bayesian models, and GPflow (van der Wilk et al., 2020) in Python for

GPs.

A more recent approach consists in using approximation methods to compute the posterior

distributions of ~θ and ~θhyp. These approximation solutions are applicable to specific families
of Bayesian models. One such approximation method is the integrated nested Laplace

approximation, INLA (Rue et al., 2009); it uses the Laplace approximation to efficiently compute

the approximations to the marginal posterior distributions of Latent Gaussian Models (LGMs).

In this family of models, the response variable is expressed as an additive function of the

model parameters (y = Σn
i=1θixi), and all θi follow Normal prior distributions. INLA is a useful

approximation for developing GMMs as both ergodic GMMs and non-ergodic VCM GP GMMs can

be formulated as LGMs. Further information regarding the INLA approximation can be found in
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Krainski et al. (2019, 2021) and Wang et al. (2018). A primer for developing ergodic GMMs with

INLA can be found in Kuehn (2021).

Other methods for Bayesian regression include the Variational Inference (Blei et al., 2017) which

approximates the posterior distribution with a member of a closed-form probability distribution.

2.4.1.2 Covariance Functions

The covariance functions, or kernel functions as often called in the literature, of the prior

distributions are a crucial ingredient of the GP regression. They impose a correlation structure

which dictates howa randomvariable (i.e. a coefficient or the ground-motion intensity parameter)

varies in space. The covariance functions described in this section are isotropic and stationary;

that is, the size and rate of spatial variation they impose is independent of the direction and

location. Although this is likely a simplification for the systematic ground-motion effects, most of

the non-ergodic GMM do not use non-stationary and anisotropic kernel functions due to their

additional computational challenge. Ground-motion studies that used non-stationary correlation

structures include Kuehn and Abrahamson (2020) and Chen et al. (2021). Other studies that

applied non-stationary and anisotropic correlation structures to GP regressions include Paciorek

and Schervish (2006) and Finley (2011).

The four covariance functions described here are: the identity kernel function, the spatially

independent kernel function, the constant kernel function, and the exponential kernel function.

Examples, where these covariance functions are combined to create more complex spatial

correlation structures, are provided at the end of this section. The covariance matrices, which are

used in the regression and prediction of GP, are created by evaluating the covariance functions at

all indices, such as the earthquake or station IDs, or coordinate pairs, such as the earthquake or

station coordinates:

Ki kl = κi(tk, tl) (2.14)

where κi and Ki are the covariance function and covariance matrix for the i
th coefficient, and

tk and tl are the k
th and lth indices or coordinate values. Indices are used as input to the kernel

function if the correlation structure of the ith coefficient depends on information such as the event
or station number, while coordinates are used as input if the correlation structure depends on

information like the event or site location. In vector notation the covariance matrix is defined as:

Ki = κi(~t,~t
′) (2.15)

where ~t and ~t′ are index or coordinate arrays. If Ki is used in the regression phase, ~t and ~t
′

correspond to the existing scenarios; these are the scenarios in the regression dataset. However,

ifKi is used in the prediction phase, ~t and ~t
′ correspond to combinations of the existing and new

scenarios. Further details on the GP prediction are provided in Section 2.4.1.4.

The identity kernel function is given by:

κi(tk, tl) = ω2
i δ(k − l) (2.16)

where δ(x) is the Dirac delta function (δ(x = 0) = 1 and δ(x 6= 0) = 0). It is used for random
variables that are statistically independent with ω being the standard deviation of the normal
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distribution. It generates a covariance matrix that is equal to ω2 along the diagonal and zero

everywhere else. This kernel function is used tomodel the within-event within-site aleatory term,

δWSes.

The spatially independent kernel function is given by:

κi(tk, tl) = ω2
i δ(‖tk − tl‖) (2.17)

This kernel imposes perfect correlation between random variables at the same location or with

the same index, and zero correlation between random variables at different locations or with

different indices. The hyper-parameter ω defines the size of the variability, that is, how much

the values of the random variable vary between points that are not collocated. If tk and tl are pair
of coordinates, ‖tk − tl‖ corresponds to the L2 distance norm between the two coordinates (i.e.

the Cartesian distance between coordinates). If tk and tl are indices, ‖tk − tl‖ corresponds to the
absolute difference between the two values.

Depending on the software, the covariance matrix of a spatially independent non-ergodic term

can be modeled either with the identity or spatially independent kernel function. For example,

consider a spatially independent site term, δ~ci,S , that has a unique value at every site but zero
spatial correlation. If a statistical software requires all terms to be of size N , where N is the

number of records, the spatially independent kernel function should be used. That is because,

if kth and lth recording have the same station coordinates, δci,S k and δci,S l should be equal (i.e.

perfectly correlated). In this approach, all covariance matrices are size N × N . However, if a
statistical software can model terms of different sizes, the identity kernel function can be used.

In this case, it is more efficient to estimate δ~ci,S at unique station locations and then pass it to
the associated recordings. In this approach, δ~ci,S is uncorrelated, as every station coordinate
is repeated only once, thus it can be modeled with an identity covariance matrix of size Ns ×
Ns, where Ns is the number of stations, reducing the and number of operations and memory

requirements.

The constant kernel function is given by:

κi(tk, tl) = ω2
i (2.18)

with ω controlling the deviation from the mean of the prior distribution. It imposes perfect

correlation between all random variables so that they all have the same offset from the mean

function. As an example, in Landwehr et al. (2016), the constant kernel function was applied to

all coefficients to model their deviation from the mean of the prior which was equal to zero.

Alternatively, constant offsets in the coefficients can be modeled with a one-dimensional prior

distribution on the mean function of the coefficient, as in the case of cca,p in Lavrentiadis et al.
(2021). It depends on the modeler and software which option is more attractive. The main

advantage of the first option is that it includes all information in the kernel function, while the

main advantage of the second option is that it can lead to a sparse covariance matrix.

The exponential kernel function is given by:

κi(tk, tl) = ω2
i e

− ‖tk−tl‖
`i (2.19)
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This kernel function is applied to spatially varying random variables. The hyperparameters ` and
ω control the specific length scale and size of the spatial variation. At the two extremes of `, the
exponential kernel converges to a spatially independent and constant kernel function. For `→ 0+

the spatial correlation weakens converging to a spatially independent kernel function, while for

` → +∞ the correlation becomes stronger converging to a constant kernel function. With this

kernel function, a random variable is assumed to vary continuously but not smoothly in space (i.e.

the spatial variation of the random variable is continuous, but the first derivative of the spatial

variation is not). This kernel function is widely used in geostatistics to model spatially varying

phenomena.

Another kernel function for modeling continuously spatially varying random variables is the

squared exponential. This kernel function is infinitely differentiable resulting in very smooth

spatial variations that may be unrealistic for spatial processes (Stein, 1991). However, the main

advantage of this covariance function is that it is separable in the X and Y coordinates which

allows for efficient approximations of the kernel function for large datasets (Lacour, 2022).

More complex correlation structures can be built by combining the kernel functions described

above using the properties of the Normal distribution. For example, assume a non-ergodic

site adjustment δci,S that is the combined effect of an underlying continuous adjustment over
large distances and a site-specific adjustment. Such a site adjustment can be broken into

individual components: δcia,S for the underling continuous adjustment, and δcib,S for site-specific
adjustment, with δci,S = δcia,S + δcib,S . In this case, δcia,S can be assigned a prior distribution
which has a zero prior mean and an exponential kernel function (κia,S), and δcib,S can be assigned
a prior distribution which has a zero prior mean and a spatially-independent kernel function

(κib,S):

δ~cia,S ∼ N
(
~0, κia,S(~tS,~tS)

)
δ~cib,S ∼ N

(
~0, κib,S(~tS,~tS)

) (2.20)

Based on the linear properties of the Normal distribution, the prior distribution of δci,S has amean
which is equal to the sum of mean functions of the individual components, and a kernel function

which is equal to the sum of the kernel functions of the individual components:

δ~ca,S ∼ N
(
~0, κia,S(~tS,~tS) + κib,S(~tS,~tS)

)
(2.21)

Similarly, the kernel function of the median non-ergodic ground motion can be obtained by

combining the kernel functions of the GMM coefficients. For simplicity, only three terms of the

ergodic base GMM (Equation 2.1) are used in this example:

fnerg = c1 + c4,E(tE) ln(Reff ) + c10,S(tS) ln(VS30/Vref ) (2.22)

whereReff = R+c6, c1 is the intercept, c4,E is the geometrical-spreading termwhich is a function
of the earthquake coordinates and scales with ln(Reff ), and c10,S is a linear site amplification term
which is a function of the site coordinates and scales with ln(VS30/Vref ).
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If, the GMM coefficients are modeled as GPs with prior distributions:

~c1 ∼ N (~µ1, κ1)

~c4,E ∼ N
(
~µ4,E, κ4,E(~tE,~tE)

)
~c10,S ∼ N

(
~µ10,S, κ10,E(~tS,~tS)

) (2.23)

with ~µi and κi being the mean and kernel functions of the i
th coefficient, respectively; the prior

distribution of fnerg is equal to:

~fnerg ∼ N
(
~µ1 + ~µ4,E ◦ ln(~Reff ) + ~µ10,S ◦ ln(~VS30/Vref ),

κ1 + κ4,E(~tE,~tE) ◦ (ln(~Reff ) ln(~Reff )
ᵀ)

+ κ10,S(~tS,~tS) ◦ (ln(~VS30) ln(~VS30)ᵀ)
) (2.24)

in which the symbol ◦ corresponds to the element-wise product, and ln(~Reff ) and ln(~VS30/Vref )
are column vectors with the ln(Reff ) and ln(VS30/Vref ) values of all recordings. A linear

combination of Normal distributions follows a Normal distribution. The mean of fnerg is equal to
the linear combination of the means of the prior distributions of the coefficients. To get a more

intuitive feeling for the kernel function of fnerg, first consider the covariance between just two
scenarios cov(fnerg k, fnerg l). By substituting Equation 2.22 into the covariance and assuming the
coefficients of the GMM are independent with each other (cov(ci, cj) = 0 if i 6= j) we obtain:

cov(fnerg k, fnerg l) = cov(c1, c1)

+ ln(Reff k)cov(c4,E(tE k), c4,E(tE l)) ln(Reff l)

+ ln(VS30 k)cov(c10,S(tS k), c10,s(tS l)) ln(VS30 l)
= κ1 + ln(Reff k)κ4,E(tE k, tE l) ln(Reff l)

+ ln(VS30 k)κ10,S(tS k, tS l) ln(VS30 l)

(2.25)

The kernel function in Equation 2.24 creates the same covariance as Equation 2.25 for all

recordings. For example, for the c1,S contribution, the ln(~Reff ) ln(~Reff )
ᵀ product creates a

matrix with all ln(Reff k) ln(Reff l) permutations, and the element-wise product with κ4(~χe, ~χe)
combines these permutations with the covariance of the coefficient.

Generalizing from previous example, the covariance function of the median ground motion

between scenarios k and l is:

κnerg kl = Σd
i=1 xi k κi(ti k, ti l)xi l (2.26)

in which κnerg is the kernel function for fnerg, κi is the kernel function of the i
th non-ergodic

coefficient, xi is the independent variable in front of the i
th non-ergodic coefficient (e.g. ln(Reff )),

ti is input coordinate or ID for κi, and d is the number of the non-ergodic terms.

In matrix notation Equation 2.26 can be defined as:

κnerg = Σd
i=1κi(~ti,~ti) ◦ (~xi~xᵀi ) (2.27)
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Figure 2.1. Schematic showing the calculation of the cell-path segments for the cell-specific
anelastic attenuation. xsite is the site location, xcls is the closest point on the rupture
to the site, the dashed line indicates the source-to-site path, and the ∆Ri of the i

th

cell .

2.4.1.3 Cell-specific anelastic attenuation

The cell-specific anelastic attenuation was first proposed by Dawood and Rodriguez-Marek (2013)

and then extended by Kuehn et al. (2019) and Abrahamson et al. (2019) as an approach to capture

the systematic effects related to the paths. In this method, the domain of interest is divided into

a grid of cells and each cell is assigned its own anelastic attenuation. For each recording, the ray

path that connects a point on the rupture with the site is broken into cell-path segments (∆Ri)

which are the lengths of the ray within each cell (Figure 2.1). For a given recording, the total

anelastic attenuation can be calculated by fatten,p = ~cca,p ·∆~Rwhere~cca,p is vector containing the
attenuation coefficients of all the cells.

Currently, there is no consensus on the origin point for the ray path. Dawood and Rodriguez-Marek

(2013) used the epicenter, while Kuehn et al. (2019) and Lavrentiadis et al. (2021) used the closest

point on the rupture to the site, as the length of that path is equal to Rrup, which is a common

distance metric for anelastic attenuation in ergodic GMMs. Additional research is needed in this

area to test different options for the origin of the ray path and also investigate if there is any

magnitude dependence in the location of the representative point for finite-fault ruptures.

In GP, the cell attenuation can be modeled similarly to the other spatially varying non-ergodic

terms using a Truncated Normal as a prior distribution:

~cca,P ∼ N (~µca,P ,κca,P (~tC ,~tC))T (, 0) (2.28)

the cell attenuation is limited to be equal or less than zero to ensure the proper extrapolation of

the GMM. In statistical software that does not include truncated Normal distributions, the cell-

specific attenuation is modeled with a Normal prior, but at a postprocessing step it is checked that

no or only a small number of cells have positive attenuation.

The mean of the prior distribution, ~µca,P , controls the average anelastic attenuation of the cells,

while the kernel function,κca,P , controls their spatial correlation. In regions with sparse coverage,
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the cell-specific anelastic attenuation is close to ~µca,P as there are not enough data to inform the

posterior. In regionswith significant coverage, the cell-specific anelastic attenuation deviates from

~µca,P to capture the systematic path effects which influence the ground motion in those regions.

The ~µca,P can be either fixed to the anelastic attenuation of the ergodic GMM or be assigned

its own prior distribution. The second option is computationally more involved but takes into

account the re-weighting of the paths. In an ergodic GMM, the anelastic attenuation is controlled

by the attenuation of the areas with high-path coverage; however, in the cell-specific anelastic

attenuation, the mean attenuation is determined at the cell level, the path coverage controls the

mean and epistemic uncertainty of the individual cells, but it does not have a direct impact on the

mean attenuation of all cells, which is why the mean of the cell-specific anelastic attenuation and

the ergodic anelastic attenuation can be different.

The kernel functions that were presented in Section 2.4.1.2 can also be used to model the

spatial correlation of the cell attenuation. For instance, Kuehn et al. (2019) used the spatially

independent kernel function, while Lavrentiadis et al. (2021) used a combination of the

exponential and spatially independent kernel function. Other approaches for modeling the

spatial correlation of cell-specific anelastic attenuation are the conditional autoregressive (CAR)

and simultaneous autoregressive (SAR) models (Ver Hoef et al., 2018). These models have sparse

precision matrices (i.e. inverse of covariance matrices) reducing the computational cost.

The prior distribution for the total anelastic attenuation can be derived from the prior distribution

for the cell attenuation using the linear transformation properties of the Normal distribution:

~fatten,P ∼ N (R ~µca,P ,R κca,p Rᵀ)T (, 0) (2.29)

whereR is a matrix with the cell-path segments of all recordings, the ith row ofR is equal to∆~R
of the ith recording. The ~fatten,P prior distribution can be used in GP to make direct predictions
for the median non-ergodic ground motion at new locations (Section 2.4.1.4).

2.4.1.4 Prediction

The median non-ergodic ground motion can be predicted for the new scenarios either by first

predicting the non-ergodic coefficients and then substituting them at the non-ergodic functional

formor by predicting the non-ergodic groundmotiondirectly. This choice depends on how theGPs

aremodeled. If theGMMterms aremodeled as GPs explicitly, the firstmethod is used. However, if

the GMM terms are modeled as GPs implicitly (i.e. they have been integrated out in the likelihood

function), the second method is used.

Prediction of non-ergodic coefficients

The non-ergodic coefficient adjustments for the new scenarios can be predicted based on

the hyperparameters and posterior distribution of the coefficient adjustments of the existing

scenarios. Initially, we consider the case where the non-ergodic coefficient adjustments of the

existing scenarios have zero epistemic uncertainty. The joint prior distribution between the

non-ergodic coefficient adjustments of the existing and new scenarios is:
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[
δ~ci
δ~c∗i

]
∼ N

([
~0
~0

]
,

[
Ki ki

kᵀ
i K∗

i

])
(2.30)

in which δci are the non-ergodic coefficient adjustments of the existing scenarios, δc
∗
i are the non-

ergodic coefficient adjustments of new scenarios, Ki is the prior covariance between all pairs of

existing scenarios (Ki kl = κi(tk, tl)),K∗
i is the prior covariance between all pairs of new scenarios

(K∗
i kl = κi(t

∗
k, t

∗
l )), and ki is the prior covariance between all pairs of existing and new scenarios

(ki kl = κi(tk, t
∗
l )).

Because of the cross-correlation between the non-ergodic coefficient adjustments of the existing

and new scenarios, described by k, the posterior distributions of δ~c∗i can be predicted by ensuring
that they are in agreement with δ~ci. A naive approach for that would be to generate multiple
realizations of δ~c∗i from the joint prior distribution (Equation 2.30) and reject those that are

inconsistent with δ~ci. The distribution of the accepted realizations δ~c
∗
i would correspond to the

posterior distribution of δ~c∗i . Although this is theoretically correct, it would be computationally
inefficient. In statistics, this can be performed easily by conditioning δ~c∗i on δ~ci, which corresponds
to predicting δ~c∗i based on the values of δ~ci. The conditional distribution of a joint Normal prior
distribution is also a Normal distribution:

δ~c∗i |δ~ci ∼ N (~µδ~c∗i |δ~ci , δ~c∗i |δ~ci) (2.31)

with ~µδc∗i |δci and δc∗i |δci being the mean and covariance of the posterior distributions of δc
∗
i given

by (Rasmussen and Williams, 2006):

µδc∗i |δci = kᵀ
i K−1

i δci (2.32)

δc∗i |δci = K∗
i − kᵀ

i K−1
i ki (2.33)

In other fields where GP regression is used, one is typically interested only in the point-wise

uncertainty which means that the mean and epistemic uncertainty of δc∗i can be calculated
independently for each scenario reducing the computational cost. However, in PSHA it is

necessary to calculate the full covariance for the new scenarios, as the spatial correlation of δ~c∗i ,
which described by the off-diagonal term of δc∗i |δci , needs to be included in the logic tree.

A more realistic case is for there to be some uncertainty in the estimation of the non-ergodic

coefficient adjustments of the existing scenarios described by the posterior distribution

(p(δ~ci|~y, ~x)). This uncertainty can be propagated in the prediction of the non-ergodic coefficient
adjustments of the new scenarios by predicting δ~c∗i using all possible values of δ~ci and considering
how likely each δ~ci is (p(δ~ci|~y, ~x)). In statistics, this is defined as marginalization of δ~c∗i :

p(δ~c∗i |~y, ~x) =
∫
p(δ~c∗i |δ~ci)p(δ~ci|~y, ~x) dδ~ci (2.34)

where the probability density function p(δc∗i |δci) can beobtained from the conditional distribution
in Equation 2.31.
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A closed-form solution for the posterior distribution of δ~c∗i which includes the uncertainty of δ~ci
can be obtained if the posterior distribution of δ~ci is assumed to be Normal (Lavrentiadis et al.,
2021):

δ~ci|y, x ∼ N (~µδci|y,x, δci|y,x) (2.35)

where µδci|y,x is the mean, and δci|y,x is the covariance of the posterior distribution of δci. With
this assumption, Equation 2.34 results in a Normal distribution:

δ~c∗i |~y, ~x ∼ N (~µδc∗i |y,x, δc∗i |y,x) (2.36)

with the mean and covariance given in Equations (2.37) and (2.38), respectively (Bishop, 2006).

~µδc∗i |y,x = kᵀ
i K−1

i ~µδci|y,x (2.37)

δc∗i |y,x = K∗
i − kᵀ

i K−1
i ki + kᵀ

i K−1
i δci|y,x(k

ᵀ
i K−1

i )ᵀ (2.38)

The assumption that the posterior distributionof δci is Normal is considered reasonable because in
a GP regression all non-ergodic terms have Normal prior distributions. If the hyperparameters are

fixed or follow Normal prior distributions, this assumption would be absolutely valid; however,

because some of the hyperparameters are assigned different prior distributions, the posterior

distribution of δci may slightly deviate from this assumption. For the prediction of δ~c∗i , Kuehn
(ress) showed that this approximation gives consistent results with Equation 2.34 where the full

posterior distribution of δ~ci is used.

The non-ergodic coefficients of the new scenarios (c∗i ) can be computed similarly to δc
∗
i , however,

the non-zero prior means needs to be considered:

~µδc∗i |y,x = kᵀ
i K−1

i (~µδci|y,x − ~µδci) + ~µδc∗i
(2.39)

δc∗i |y,x = K∗
i − kᵀ

i K−1
i ki + kᵀ

i K−1
i δci|y,x(k

ᵀ
i K−1

i )ᵀ (2.40)

where ~µδci and ~µδc∗i
are the prior means of the non-ergodic coefficients for the existing and new

scenarios.

Prediction of non-ergodic ground motion

An alternative approach to predict the median non-ergodic ground motion for the new scenarios,
~f ∗
nerg, is to directly obtain it from the ground-motion observations of the exciting scenarios, ~y
(Landwehr et al., 2016). The main difference between this approach and the previous approach

is that ~y includes an aleatory component which must be considered in the predictions. The joint
prior distribution between ground-motion observations of the existing scenarios andmedian non-

ergodic ground motion of the new scenarios is:

[
~y
~f ∗
nerg

]
∼ N

([
~µf

~µ∗
f

]
,

[
Kf + φ2

0I + τ 20 1 kf

kᵀ
f K∗

f

])
(2.41)

whereµf is the priormeanof the ground-motionof the existing scenarios, andµ
∗
f is the priormean

of the ground-motion of the new scenarios. The Kf , K∗
f , and kf are the prior covariance for the
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epistemic uncertainty of the ground-motion between all pairs of existing, new, and existing/new

scenarios, respectively, and φ2
0I and τ 20 1 are the covariance for the within-event and between-

event aleatory variability.

The ~µf and ~µ
∗
f depend on how the non-ergodic GMM is being developed. If it is based on a

backbone ergodic model, ~µf and ~µ
∗
f are equal to

~ferg for the existing and new scenarios. That

is, without any knowledge of the non-ergodic effects, both the mean of the observations and

non-ergodic ground motion are equal to the means the ergodic ground motion. However, if the

non-ergodic GMM is developed from the beginning, ~µf and ~µ
∗
f are equal to zero.

The prior covariance for the epistemic uncertainty of the ground motion can be obtained

by combining the kernel functions of the non-ergodic coefficients as shown in Section

2.4.1.2, Kf kl = Σd
i=1xi k κi(ti k, ti l)xi l. Similarly, K∗

f kl = Σd
i=1x

∗
i k κi(t

∗
i k, t

∗
i l)x

∗
i l, and

kf kl = Σd
i=1xi k κi(~xk, ~x

∗
l )x

∗
i l. The prior covariance for ~y includes φ

2
0I and τ 20 1 because the

deviation of ground-motion observations from ~µy is the result of both aleatory variability and

epistemic uncertainty. There is not aleatory variability in covariance between the ground-motion

observations of the existing scenarios and the mean ground-motion of the new scenarios as

any correlation between the two comes from the systematic non-ergodic terms. Similarly, the

covariance of ~f ∗
nerg does not include an aleatory component, as it corresponds to the median

prediction of the non-ergodic ground motion.

Once the joint prior distribution is defined, the median non-ergodic ground motion can be

predicted by expressing it as a conditional distribution on the ground-motion observations:

f ∗
nerg|y ∼ N (µf∗

nerg |y, f∗
nerg |y) (2.42)

with themean and the covariance of the conditional distribution given in Equations 2.43 and 2.44.

µf∗
nerg |y = µ∗

f + kᵀ
f (Kf + φ2

0I + τ 20 1)−1(y − µf ) (2.43)

f∗
nerg |y = K∗

f − kᵀ
f (Kf + φ2

0I + τ 20 1)−1kf (2.44)

2.4.2 Model Extrapolation Constraints and Epistemic Uncertainty

In developing any type of GMM— ergodic or non-ergodic — attention must be paid to its proper

extrapolation. That is because GMMs are typically derived on datasets primarily composed of

small-to-moderate earthquakes at medium-to-large distances, but in PSHA, are applied to large

earthquakes at short distances. For that, the trends in the dataset are insufficient to guide the

extrapolation of a GMM and additional constraints need to be introduced.

These constraints can be imposed both on the model parameters as well as the model

hyperparameters. Two common constraints for the model parameters are related to the

magnitude saturation at short distances and anelastic attenuation.

Full magnitude saturation at short distances means that, close to the fault, the ground motion

does not scale with magnitude. Similarly, over saturation with magnitude means that, close
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to the fault, the ground motions reduce as the magnitude increases. This is a controversial

issue because empirical datasets, such as NGAWest2, show trends of oversaturation for large

magnitudes at short periods and small distances, but the results of numerical simulations support

positive magnitude scaling (Abrahamson and Silva, 2007; Collins et al., 2006). Due to the limited

number of empirical data from large events, and practical design purposes most GMMs do not

allow oversaturation and impose full saturation as a lower limit on the regressions. One such

practical consideration is that, if oversaturation is allowed, a structure would need to be designed

not only for the largest magnitude but for the smaller events too as they could lead to higher

seismic demands. This is straightforward to model in PSHA, but it becomes more complicated

when selecting conservative deterministic scenarios.

In a GMM, the magnitude saturation of short periods at zero distance from the rupture is

controlled by the combination of the linear magnitude scaling coefficient, the geometrical

spreading coefficient, the magnitude scaling coefficient for the geometrical spreading, and the

pseudo-depth coefficient in geometrical spreading. In the example GMM provided in Equation

2.1, the coefficients control magnitude saturation are: c2, c5 and c6. Full magnitude saturation at
zero distance is achieved by:

c5 =
−c2

ln(c6)
(2.45)

With this functional form, it is easy to derive a non-ergodic GMMwith a full saturation constraint,

as the c2, c5, and c6 coefficients are treated as fixed terms. However, itmaymore difficult to impose
this constraint with other common functional forms. For example, Chiou and Youngs (2014) (CY14)

uses a different functional form, and full saturation is achieved by:

c2 = −c4 c6 (2.46)

where c2 is the linear magnitude scaling, c4 is the near-source geometrical spreading, and c6
controls the magnitude dependence of the geometrical spreading. In this functional form, it is

harder to include a spatially varying non-ergodic geometrical spreading as the value of c4 would
also affect the magnitude saturation. A non-ergodic GMM developer should consider factors like

this when deciding on the functional form and statistical software to use.

The anelastic attenuation is intended to capture the reduction of the amplitude of the seismic

waves due to the dissipation of energy as they travel through the earth’s crust; thus, the anelastic

attenuation coefficient or cell-specific anelastic attenuation must be negative to make physical

sense. However, it should be noted that due to the correlation between the linear distance term

and the geometrical spreading term, the physical interpretation of the linear distance term as

anelastic attenuation depends on using a realistic geometrical spreading term. Similarly to the

magnitude saturation, the GMM developer should either use statistical methods and software

that allows them to impose an appropriate constraint on these terms, or if that is not feasible to

ensure that the model has reasonable distance scaling when used in forward calculations.

Constraints can also be applied to hyperparameters to impose a desired model behavior. For

instance, if a VCM GMM contains both a spatially varying site constant and a spatially varying

VS30 coefficient as a function of the site coordinates, it may be deemed reasonable to constrain
the correlation length of the site constant to be smaller than the correlation length of the VS30
coefficient. That is because, the repeatable effects related to the site amplification due to the
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underlying geologic structure, which the VS30 intends to model, are broader than the repeatable
effects related to the site-specific site amplification. Additionally, such a constraint will limit any

trade-offs between the two coefficients as they would capture systematic site effects at different

length scales.

The epistemic uncertainty of a non-ergodic GMM quantifies the confidence in estimating the

systematic source, path, and site effects; however, it does not quantify the confidence in

the model extrapolation. The latter is typically expressed by the model-to-model epistemic

uncertainty, which reflects the range of scientifically defensible approaches for developing a

GMM. In PSHA, this uncertainty is typically captured either by using multiple GMMs or by shifting

the median estimate of a base GMM. As an example of the second approach, Abrahamson et al.

(2019) incorporated the model-to-model epistemic uncertainty into a non-ergodic PSHA study for

California by estimating the epistemic uncertainty and correlation of the coefficients of a common

GMM functional based on the NGAWest2 GMMs and propagating them into the ground-motion

prediction.

Another source of model-to-model epistemic uncertainty for non-ergodic GMM is related to the

different statistical approaches and decisions in modeling the non-ergodic terms. For example,

different covariance functions (e.g. exponential, squared exponential) can be used to model

the spatially varying non-ergodic terms or even entirely different modeling approaches (e.g. GP

regression, ANNs). Such choices are expected to lead to bigger differences in areas with sparse

data.

Different intensity measures are affected differently by magnitude scaling. PSA, especially at
short periods, is sensitive to the entire frequency content of the ground motion (i.e. spectral

shape). This can be an issue when developing a GMM predominately with small earthquakes

as their frequency content is different from the frequency content of large events which are

more common in PSHA, potentially resulting in incorrect scaling coefficients. A solution to

this is developing a GMM for an intermediary intensity parameter (IP ) that is not sensitive to
spectral shape and using a transformation to convert the prediction to PSA. One such example
is Lavrentiadis and Abrahamson (2022) where used EAS was used as an intermediary IP and

Random vibration theory was used to convert EAS to PSA.

2.4.3 Other methods for non-ergodic models

The previous sections provided an in-depth discussion on developing non-ergodic GMMs using

Gaussian Process. Although it hasmany useful properties, it is not the onlymethod for developing

non-ergodic GMMs. This section provides a brief review of other methods that have been used

for this task.

Sung and Lee (2019) builtmore than 700 single-stationGMMs for the Taiwan region. Single-station

GMMs do not include non-ergodic site terms, instead, they are independently regressed with

ground motions recorded at a single station. Kriging interpolation is used to estimate the spatial

distributions of the single-station GMM coefficients and aleatory terms at new locations. This is a

simpler approach for developing a partially non-ergodic GMM, but it cannot provide estimates of

the epistemic uncertainty at the new locations as VCM GP GMM does.
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Caramenti et al. (2020) used a multi-source geographically-weighed regression (MS-GWR) to

develop a non-ergodic GMM for Italy. It is similar to GP in that the spatial correlation of the

non-ergodic terms is also captured through kernel functions; however, it is more efficient as it is

based on the least-squares regression. Themain shortcoming of this approach is that the aleatory

variability is described by a single term so it is unable to capture the correlation between the

recordings of the same earthquake.

Okazaki et al. (2021) developed a single-station GMM for PGA using an ANN trained on strong-
motion data from the KiK-net seismograph network in Japan. In this study, the systematic site

effects were expressed as a function of site ID and estimated through the ANN fitting.

25



3 FORMULATIONS OF NON-ERGODIC GROUND
MOTION MODELS USING GAUSSIAN PROCESS

In this report, non-ergodic GMMs are developed based on backbone models. In this approach,

the mean scaling is based on the ergodic backbone model while the non-ergodic effects are

determined from the total residuals (εtot) of the ergodic model without including any terms
that are treated as non-ergodic in the NGMM. Examples of calculating εtot for different types of
NGMMs are presented in the next section. The benefits of this approach are that: (i) it can be

applied to regions with limited data which may not be enough to derive the ergodic scaling, (ii)

the ergodic scaling can include non-linear term which cannot be estimated with a GP regression,

and (iii) the non-ergodic GMM can benefit from any seismological constraints built in the ergodic

backbone model. The regression tools presented in Chapters 6 and 7 are based on such an

approach.

It is beyond the scope of this report; however, a GP regression can easily be extended to model

linear “fixed effects” (ergodic coefficients) of the base model if there is enough local data. An

introduction for deriving an ergodic GMM in a Bayesian framework can be found in Kuehn (2021).

This approach may be preferred if there is not a base model available for the region of interest.

Section 3.1 presents details of three different NGMM functional forms that can be fitted with the

provided tools and Section 3.2 presents the available options for modeling of the non-ergodic

coefficients.

3.1 NON-ERGODIC GROUNDMOTION MODEL FUNCTIONAL FORM

A modeler may use the provided tools to develop one of three types of NGMM. Type1 includes

an intercept and three spatially varying non-ergodic constants. Type2, in addition to the previous

terms, includes the cell-specific anelastic attenuation. Finally, type3 also includes a spatially

varying geometrical spreading and spatially varying VS30 scaling.

The functional form for the type1 NGMM is:

yes = ferg(M,Rrup, VS30, ...) + δc0 + δc1,E(~tE) + δc1a,S(~tS) + δc1b,S(~tS) + δWS0
es + δB0

e (3.1)

where yes is the log of the ground-motion intensity measure from eth earthquake and sth station,
δc0 the constant offset to account for the re-weighting of the residuals. δc1,E(~tE) is the spatially
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varying earthquake adjustment, which varies as a function of the earthquake coordinates tE and
is intended to capture the repeatable non-ergodic effects related to the source location. δc1b,S(~tS)
is the spatially varying site adjustment, which varies as a function of the site coordinates tS and
is intended to capture the repeatable regional non-ergodic site effects. δc1a,S(~tS) is the spatially
independent site adjustment, which is independent from site to site and is intended to capture the

repeatable site-specific non-ergodic effects on top of δc1b,S(~tS). Lastly, δSW
0
es is the non-ergodic

within-event within-site residual, and δB0
e is the non-ergodic between-event residual. The total

residuals used in type1 NGMM regression correspond to the difference between the log of the

ground-motion intensity measure and the median ground motion of the ergodic backbone model

in log space (Equation 3.2).

εtot = y − ferg(M,Rrup, VS30, ...) (3.2)

The functional form for the type2 NGMM is:

yes =(ferg(M,Rrup, VS30, ...)− ca,erg Rrup) + δc0 + δc1,E(~tE) + δc1a,S(~tS) + δc1b,S(~tS)

+ ~cca,P ·∆~R + δWS0
es + δB0

e

(3.3)

where ~cca,P is a vector with all the cell-specific anelastic attenuation coefficients, ~R is a vector

with all cell-path segment lengths between earthquake e and stations s, and ca,erg is the ergodic
anelastic attenuation coefficient. ca,erg Rrup is subtracted from the ergodic prediction as its effects

are captured by the non-ergodic cell-specific anelastic attenuation. In this case, the total residuals

for the regression are equal to the difference between y and the median ground motion of the
ergodic backbone model in log space without the effects of the ergodic anelastic attenuation

(Equation 3.4).

εtot = y − (ferg(M,Rrup, VS30, ...)− ca,erg Rrup) (3.4)

Finally, the functional form for the type3 NGMM is:

yes =(ferg(M,Rrup, VS30, ...)− (ca,erg Rrup + c2,erg fgs(Rrup,M) + c3,erg fVS30
(VS30)))

+ δc0 + δc1,E(~tE) + δc1a,S(~tS) + δc1b,S(~tS)

+ c2,P (~tE) fgs(Rrup,M) + c3,S(~tS) fVS30
(VS30)

+ ~cca,P ·∆~R + δWS0
es + δB0

e

(3.5)

In addition to the previous non-ergodic terms, the type3 NGMM includes a spatially varying

geometrical spreading coefficient (c2,P (~tE)) that is a function of the earthquake coordinates, and
a spatially varying VS30 scaling coefficient (c3,S(~tS)) that is a function of the site coordinates.
fgs(Rrup,M) corresponds to the geometrical spreading scaling term and fVS30

(VS30) corresponds
to the VS30 scaling term. The ergodic geometrical spreading and VS30 scaling are subtracted from
the ergodic prediction as they are treated as spatially varying in the type3 NGMM. The total

regression residuals are equal to the difference between y and the median ground motion of the
ergodic backbone model without the effects of the ergodic geometrical spreading, VS30 scaling,
and anelastic attenuation (Equation 3.6).

εtot = y− (ferg(M,Rrup, VS30, ...)

−(ca,erg Rrup + c2,erg fgs(Rrup,M) + c3,erg fVS30
(VS30)))

(3.6)
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3.2 MODELING NON-ERGODIC EFFECTS

A Gaussian process is comprised of two components: the mean function and the kernel function.

The choice of the mean function controls the behavior of the non-ergodic coefficient away from

data while the kernel function affects the spatial correlation of a non-ergodic coefficient. The

remaining section covers the modeling options for the non-ergodic terms as Gaussian Processes;

details of the prior distributions of the hyper-parameters are covered in Chapters 6 and 7 as their

modeling depends on the statistical package.

3.2.1 Spatially varying earthquake adjustment

The spatially varying earthquake adjustment can bemodeled as aGaussian process (Equation (3.7))

with a zero mean and a negative exponential (Equation (3.8)) or a Matérn (Equation (3.9)) kernel

function.

δ~c1,E ∼ GP
(
~0, κ1,E(~tE,~t

′
E)
)

(3.7)

κ1,E(~tE,~t
′
E) = ω2

1,E exp
(
−||~tE − ~t′E||

`1,E

)
(3.8)

κ1,E(~tE,~t
′
E) =

ω2
1,E

2ν−1Γ(ν)

(√
2ν

`1,E
||~tE − ~t′E||

)ν

K

(√
2ν

`1,E
||~tE − ~t′E||

)
(3.9)

δ~c1,E is a vector with the source adjustments at all event locations. The correlation between the
source effects of two earthquakes located at ~tE and ~t′E is given by κ1,E(~tE,~t

′
E). The negative

exponential and Matérn kernel functions are similar in modeling continuously spatially varying

fields but different in the smoothness of these fields. Currently, the choice of the kernel function

mainly depends on the ease of implementation on the different statistical packages, negative

exponential is easier to implement in STAN andMatérn is easier to use in INLA; however, there are

no limitations on using different kernel functions on either software. In both kernel functions, the

correlation length (`1,E) controls the length scale of the spatial variation of the non-ergodic effects,
and the scale (ω1,E) controls the size of the non-ergodic effects. Additionally, for theMatérn kernel

function, ν controls the smoothness of the Gaussian field and is typically set to ν = 1. K is the

modified Bessel function of the second kind. More information on the Matérn kernel is provided

in Section 7.1.4. With both kernel functions, away from data, the mean of δc1,E reverts to zero due
to the zero mean function, and the epistemic uncertainty is equal to ω1,E .

3.2.2 Spatially independent site term

The spatially independent site term is modeled with a zero mean and a spatially independent

kernel function:

δ~c1a,S ∼ GP
(
~0,κ1a,S(~tS,~t

′
S)
)

(3.10)

κ1a,S(~tS,~t
′
S) = ω2

1a,S δ
(
||~tS − ~t′S||

)
(3.11)
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δ~c1a,S is a vector with the site-specific site adjustments at all site locations. At sites with stations
that have recorded past earthquakes, the mean and epistemic uncertainty of δc1a,S is determined
by the previous ground motions, whereas at sites with no ground motions, the mean of δc1a,S is
zero and the epistemic uncertainty is ω1a,S .

3.2.3 Spatially varying site adjustment

The spatially varying site adjustment captures non-ergodic site effects that vary on a regional scale.

It is modeled similarly to δ~c1,E with a zero mean and a negative exponential or Matérn kernel
function:

δ~c1b,S ∼ GP
(
~0,κ1b,S(~tS,~t

′
S)
)

(3.12)

κ1b,S(~tS,~t
′
S) = ω2

1b,S exp
(
−||~tS − ~t′S||

`1b,S

)
(3.13)

κ1b,S(~tS,~t
′
S) =

ω2
1b,S

2ν−1Γ(ν)

(√
2ν

`1b,S
||~tS − ~t′S||

)ν

K

(√
2ν

`1b,S
||~tS − ~t′S||

)
(3.14)

where `1b,S is the correlation length and ω1b,S is the scale of δ~c1b,S .

3.2.4 Geometric spreading and VS30 scaling

The non-ergodic geometrical spreading (Equations 3.15 to 3.17) and VS30 scaling (Equations 3.18 to
3.20) coefficients are also modeled as Gaussian Processes with a negative exponential or Matérn

kernel function but their difference to δ~c1,E and δ~c1b,S is that they are assigned a non-zero prior
distribution for themean function. The prior mean is typically centered around the ergodic values

of coefficients but is given some range to accommodate the re-weighting of the data points.

~c2,P ∼ GP
(
~µ2,P , κ2,P (~tE,~tE)

)
(3.15)

κ2,P (~tE,~t
′
E) = ω2

2,P exp
(
−||~tE − ~t′E||

`2,P

)
(3.16)

κ2,P (~tE,~t
′
E) =

ω2
2,P

2ν−1Γ(ν)

(√
2ν

`2,P
||~tE − ~t′E||

)ν

K

(√
2ν

`2,P
||~tE − ~t′E||

)
(3.17)

~c3,S ∼ GP
(
~µ3,S, κ3,S(~tS,~tS)

)
(3.18)

κ3,S(tS, t
′
S) = ω2

3,S exp
(
−||~tS − ~t′S||

`3,S

)
(3.19)

κ3,S(tS, t
′
S) =

ω2
3,S

2ν−1Γ(ν)

(√
2ν

`3,S
||~tS − ~t′S||

)ν

K

(√
2ν

`3,S
||~tS − ~t′S||

)
(3.20)

~c2,P is a vector with the geometrical spreading coefficient at all event locations. ~c3,S is a vector
with the VS30 scaling coefficient at all site locations. ~µ2,P and ~µ3,S are the mean functions for

~c2,P and ~c3,S , respectively. `2,P is the correlation length and ω2,P is the scale of δ~c2,P . `3,S is the
correlation length and ω3,S is the scale of δ~c3,S .
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3.2.5 Anelastic attenuation

In the provided software, the anelastic attenuation coefficients can be modeled either as

independent or as partially spatially correlated Gaussian Processes:

~cca,P ∼ GP
(
~µca,P ,κca,P (~tC ,~t

′
C)
)

(3.21)

where ~tC is the midpoint coordinates of all anelastic attenuation cells. In both cases, the mean
function (~µca,P ) is centered around the ergodic coefficient for anelastic attenuation. A spatially

independent covariance function (Equation 3.22) is used for the independent anelastic attenuation

cells, where ωca,P controls the size of the variability. A mixture of a negative exponential and

spatially independent kernel function (Equation 3.23) is used for the partially spatially-correlated

case. `ca1,P and ωca1,P control the length scale and size of the underlying spatially correlated

variability, respectively. ωca2,P dictates the size of the spatially independent variability

κca,P (~tC ,~t
′
C) = ω2

ca,P δ
(
||~tC − ~t′C ||

)
(3.22)

κca,P (~tC ,~t
′
C) = ω2

ca1,P exp
(
−||~tC − ~t′C ||

`ca1,P

)
+ ω2

ca2,P δ
(
||~tC − ~t′C ||

)
(3.23)

30



4 DATA PREPARATION FOR DEVELOPMENT OF
NON-ERGODIC GMMS

This chapter provides the structure of input files needed to develop non-ergodic GMMs. The

regression tools for the development of non-ergodic ground-motion models read a standardized

format of input files. These files include the ground-motion flatfile (Section 4.1) and, for Type-

2 and Type-3 NGMM regressions, also the cell-info and cell-path length faltfiles (Section 4.2).

All files are saved in a comma-separated values format (.csv) with the first row corresponding

to the column names. Examples of these files can be found in the synthetic dataset directory

ngmm_tools / Data / V e r i f i c a t i o n .

4.1 GROUND-MOTION FLATFILE

The Ground-motion flatfile contains the source and site information, as well as the total ergodic

residuals. The mandatory columns in the ground-motion flatfile are listed below.

• Record Sequence Number (rsn) which is a unique number of every ground-motion record
in the flatfile.

• Earthquake ID (eqid) which is a unique number of every event in the flatfile. All ground
motions from the same earthquake have the same eqid.

• Station Sequence Number (ssn) which is a unique number of every station in the flatfile.
All ground-motions records at the same station have the same ssn.

• Earthquake location (eqX and eqY) in UTM coordinates.

• Elevation for earthquake top of rupture (eqZ).

• Station location (staX and staY) in UTM coordinates.

• Total residual without including the effect of the scaling terms that are treated as non-

ergodic (tot). The definition of the total residuals for the different types of NGMM tools

is described in Section 3.1.

Additionally, for a type-3 GMM, the Ground-motion flatfile needs to include:

• The scaling term for geometrical spreading (x_2) which is determined by evaluating the
geometrical spreading functional form for all ground motions (x2 = fgs (Rrup,M))
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Figure 4.1. Sketch of numbering convention for vertices of attenuation cells.

• The scaling term for site amplification (i.e. VS30 scaling, x_3) which is determined by
evaluating VS30 scaling functional form for all ground motions (x3 = fVS30

(VS30))

4.2 CELL FLATFILES

The cell-info flatfile defines the ids and coordinates of the attenuation cells. The cell-path length

flatfile contains the cell path segments of all ground motions in the ground-motion flatfile over all

the attenuation cells in the cell-info flatfile.

The columns in the cell-info flatfile are:

• Cell ID (cellid) which is a unique number for every anelastic attenuation cell.

• Cell name (cellname) which is a unique character string for every cell.

• Cell vertices locations (q1X, q1Y and q1Z to q8X, q8Y and q8Z) in UTM coordinates. The

numbering convention of the cell vertices is shown in Figure 4.1.

• Cell mid-point location (mptX,mptY, andmptZ) in UTM coordinates.

Similarly, the columns in the cell-path length flatfile are:

• rsn, eqid, and ssn of the corresponding ground motion in the ground-motion flatfile.

• Cell names of the cell info flatfile with the corresponding cell-path segments for every

ground motion.

Both input the cell-info and cell-path flatfiles canbe generatedwith the compu t e _ c e l l d i s t a n c e

_ma t r i x . i pynb Jupyter notebook by specifying the Ground-motion flatfile and extents of

the domain. d i r _ f l a t f i l e and n ame _ f l a t f i l e define the directory and name of the

ground-motion flatfile, while g r i d _ l im s _ x , g r i d _ l im s _ y , g r i d _ l i m s _ z define the

longitudinal, latitudinal, and vertical extents of the domain.

As an example, a ground-motion flatfile with ngm records will have ngm + 1 rows, one row for

each groundmotion plus one row for the header. Similarly, a cell info flatfile with nc cells will have

nc +1 rows, one row for each cell and one row for the header. While the accompanying cell-path
flatfile will have ngm+1 rows, a row for the header and every groundmotion, and nc+3 columns,
a column for rsn, eqid, ssn and a column for every cell.
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5 SYNTHETIC DATASETS FOR VERIFICATION OF
COMPUTER TOOLS

The verification of non-ergodic ground motion tools is performed through the use of synthetic

datasets. In this approach synthetic datasets with known non-ergodic effects are generated, and

the developed tools are evaluated in their accuracy to retrieve the “true” non-ergodic effects solely

based on the total residuals and the source, path, and site information. No direct information

about the non-ergodic effects is provided to the regression tools.

In order for the verification exercise to be applicable to actual ground-motion datasets, the

synthetic datasets need to have a realistic event and station spatial coverage. Herein, the realism

was ensured by basing the synthetic datasets on the metadata of the ground-motion records

comprising NGAWest2 (Ancheta et al., 2014) and the ground-motion records that are expected

to comprise the next phase of NGA program, NGAWest3, hereafter denoted as NGAWest3*.

Additionally, by performing the verification exercise on NGAWest3*, the performance of the

developed tools is evaluated for the size of datasets that are expected to be available in the

coming years.

Section 5.1 presents the NGAWest2 CA and NGAWest3* CA metadata, and Section 5.2

describes the methodology for generating the synthetic datasets. The files accompanying

this chapter for generating the synthetic datasets can be found at ngmm_tools / Ana l y s e s /

C o d e _ V e r i f i c a t i o n / s y n t h e t i c _ d a t a s e t s on the Github directory. The STAN files

( . s t an ) perform the sampling of the non-ergodic coefficients. The Python files ( . py) are used

as wrapper scripts to (i) read the metadata for the synthetic datasets, (ii) call the STAN files for

sampling, and (iii) save the generated datasets.

5.1 METADATA

5.1.1 Metadata of NGAWest2 CA

From NGAWest2, the ground motions that were used for the generation of the synthetic dataset

correspond to the California subset, hereafter denoted NGAWest2 CA. The chosen data set is

based on the selection criteria outlined in Abrahamson et al. (2014) GMM. The selected events

and stations are located in California, western Nevada, and part of northern Mexico (Figure 5.1).

The station density is higher in the Los Angeles, Bay Area, and San Diego metropolitan areas
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Figure 5.1. Spatial distribution for earthquakes and stations in California subset of NGAWest2 CA.

and sparser in remote areas such as northern-eastern California. It contains 12009 records from
274 earthquakes recorded at 1479 stations and spans from 1966 to 2011. The magnitude of the
earthquakes ranges from 3.0 to 7.3 and the distance of most records ranges from 10 to 200km
(Figure 5.2a). The minimum magnitude between the years 1966 and 1994 is 4.7, while from 1998
onwards is 3.0 (Figure 5.2b).

5.1.2 Metadata of NGAWest3* CA

The NGAWest3* CAmetadata were developed by combining the NGAWest2 CAmetadata (Section

5.1.1) with the ground-motion metadata of the post-2011 events that are expected to be part of

NGAWest3 for California.

The raw catalog for the anticipated records was generated by combining the 2011-2021 IRIS event
catalog for California with the IRIS station catalog for the networks: AZ, BK, CI, NC, NN, NP, SB,

and, US. The minimummagnitude of the event catalog is 2.0 and the longitude/latitude limits are
provided in Table 5.1. Since the time histories were not available during this phase of the project,

it was not feasible to accept or reject the records based on their signal-to-noise ratio. Instead, the

selection was based on the maximum distance-magnitude threshold in NGAWest2. A linear and

quadratic distance limits were visually fitted to the furthest records of the entire NGAWest2 for

the different magnitudes (Figure 5.3). Using this criterion 5, 586, 369 data points were selected
from 36, 676 earthquakes and 419 stations. Figure 5.4 shows the magnitude-distance and year-
magnitude distributions of the accepted raw data points. The VS30 values at the station locations
were obtained from Thompson et al. (2014); Wald and Allen (2007); Wills et al. (2015); Yong et al.

(2012) proxy models. The weighting of the different VS30 proxies was adopted fromWang (2020).

To generate a more manageable dataset that is more likely to be representative of a dataset used

in the development of future GMMs, the previous raw catalog was downsampled to 1000 events

and a maximum distance of 300km. The reduced dataset contains all events that are larger than
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(a) (b)

Figure 5.2. California subset of NGAWest2 CA. The left figure shows Magnitude - Distance
distribution of the selected subset. The right figure shows the Magnitude - Date
distribution of the selected events.

Table 5.1. Search boundaries of IRIS event catalog

Corner lat. (deg) lon. (deg)

SE 30.5 -113.5

SW 30.5 -125.0

NW 42.5 -125.0

NE 42.5 -113.5

Figure 5.3. Magnitude - distance threshold based on NGAWest2.
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(a) (b)

Figure 5.4. Distribution of the raw catalog of anticipated new records. The left figure shows
Magnitude - Distance distribution and the right figure show the Magnitude - Date
distribution of the raw catalog of anticipated new records.

M5, while the remaining events were randomly chosen from theM3 to 5magnitude bin.

Finally, the metadata that comprises NGAWest3* CA was created by combining the NGAWest2

CA metadata with the metadata of the reduced-size new catalog. Any stations between the two

catalogs thatwere less than 10m apartwere assumed to be collocated andwere assigned the same

unique station id. Any collocated stations were assigned the average site information (e.g. VS30 of
station coordinates) of the two datasets in NGAWest3* CA. In total, NGAWest3* CA is comprised

of 157,438 ground-motion records from 1274 events recorded at 1822 stations. The earthquake

magnitude ranges from 3 to 7.28 and the majority of the ground motions are 10 to 300 km away

from the events (Figure 5.5). Figure 5.6 shows the spatial distribution of the events and stations.

Compared to NGAWest2, there is a higher event and station coverage in North eastern California

and Nevada.

Figure 5.7 shows the cells and the path coverage of the NGAWest3* dataset, and the number of

paths per cell. Overall, there is dense path coverage in California, especially in the greater Bay

Area and Los Angeles metropolitan areas, and poorer path coverage in Nevada.

5.2 GENERATION OF SYNTHETIC DATASETS

The synthetic datasets were generated based on the source, path, and site metadata presented

in the previous section. In particular, the metadata used in the generation of the synthetic

datasets includes source coordinates, site coordinates, VS30, and rupture distance. Different sets
of synthetic datasets were generated to evaluate the developed tools in terms of the complexity

of the derived NGMMs, scalability, and universality.
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Figure 5.5. Magnitude - distance distribution of ground-motion records in NGAWest3* CA.

Figure 5.6. Spatial distribution for earthquakes and stations in NGAWest3* CA.
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(a) (b)

Figure 5.7. The left figure shows the path coverage for the attenuation cells in NGAWest3* CA. The
right figure shows the number of paths per cell.

5.2.1 Complexity, scalability, and universality

The performance of the regression tools for different levels of GMM complexity was evaluated

by generating a synthetic dataset for all types of non-ergodic ground-motion models described in

Section 3.1. These range from non-ergodic GMMs that only capture the source and site repeatable

effects to NGMMs that also capture the systematic path effects in terms of both geometrical

spreading and anelastic attenuation.

The scalability was tested through the use of different dataset sizes which correspond to

NGAWest2 CA North, NGAWest2 CA, and NGAWest3* CA flatfiles (Table 5.2 and Figure 5.8).

NGAWest2 CA North is representative of regional datasets, NGAWest2 CA is representative

of large-scale datasets used currently in the development of NGMMs, and NGAWest3* CA is

representative of the size of datasets that are expected to be available in the coming years.

Table 5.2. Size of Synthetic Datasets for Evaluating Scalability of Developed Tools

Dataset Name Number of ground-motions Number of events Number of stations

NGAWest2 CA, North 4160 150 546

NGAWest2 CA 12009 257 1479

NGAWest3* CA 157438 1274 1822

The universality of the developed tools was evaluated by creating datasets with different ranges of

hyper-parameters. In particular, two sets of hyper-parameters were used, one with short and one

with large correlation lengths (Table 5.3). The setwith large correlation lengths is representative of
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(a) (b) (c)

Figure 5.8. Event and Station Spatial Distribution of Synthetic Datasets for Testing Scalability of

Developed Tools. (a) NGAWest2 CA, North. (b) NGAWest2 CA, and (c) NGAWest3* CA

regions with uniform geology where the non-ergodic effects are expected to be similar over large

distances, while the set with short correlation lengths is representative of more heterogeneous

regions where the non-ergodic effects are expected to vary over shorter distances.

5.2.2 Sampling Approach

The synthetic dataset realizations were created by first sampling the non-ergodic coefficients

and cell-specific anelastic attenuation coefficients based on their correlation structure and then

computing the total regression residuals for the different NGMM types based on the functional

forms presented in Chapter 5. The negative exponential kernel function was used for the

correlation structure of the spatially varying non-ergodic coefficients, and the partially spatially

correlated kernel function was used for the correlation structure of the cell-specific anelastic

attenuation coefficients. For each realization of a synthetic dataset, random samples of the

coefficients were drawn by multiplying the lower Cholesky decomposition of their covariance

matrix with an array of standard normally distributed samples:

~z ∼ N (0, 1)

i = LiLi
ᵀ

~ci = Li~z + ~µi

(5.1)

where ~ci is a vector with random samples of the i
th coefficient, ~µi is an array with the mean value

of the coefficient, ~z is a vectorwith samples froma standard normal distribution, i is the covariance

matrix, and Li is the lower triangular Cholesky decomposition of i. The covariance matrix of each

coefficient is computed based on the kernel function and metadata for that coefficient:

ikl = κi(~tk,~tl) (5.2)

where ikl is the k
th row and lth column element of the i matrix. In total, for each synthetic dataset,

five realizations were created to evaluate the accuracy of the predictions.
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Table 5.3. Size of Synthetic Datasets for Evaluating Scalability of Developed Tools

Hyper- Synthetic Dataset with Synthetic Dataset with

parameter Small Corr. Lengths Large Corr. Lengths

E
rg
o
d
ic

C
o
e
ff
s c2,erg −2.0 −2.0

c2,erg −0.6 −0.6
ca,erg −0.011 −0.011

N
o
n
-e
rg
o
d
ic

O
ff
se
t

ω0 0.10 0.10
ω2 0.2 0.2
ω2 0.10 0.20
ω3 0.10 0.20
ωca 0.10 0.20

N
o
n
-e
rg
o
d
ic

S
ca
le

ω1,E 0.10 0.20
ω1a,S 0.35 0.40
ω1b,S 0.25 0.30
ω2,P 0.10 0.20
ω3,S 0.10 0.20
ωca1,P 0.004 0.005
ωca2,P 0.002 0.003

N
o
n
-e
rg
o
d
ic

S
ca
le

`1,E (km) 60 100
`1b,S (km) 30 70
`2,P (km) 60 100
`3,S (km) 60 100
`ca1,P (km) 75 120

A
le
a
t.

V
a
r. φ0 0.30 0.30

τ0 0.25 0.25
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6 DEVELOPMENT OF NON-ERGODIC GROUND
MOTION MODELS USING STAN COMPUTER
PLATFORM

This chapter provides an overview of using STAN computer platform to develop NGMMs. STAN is

an open-source software that performs a full Bayesian statistical inference using Markov Chain

Monte Carlo (MCMC) (Stan Development Team, 2022). This approach creates a Markov Chain

whose stationary distribution corresponds to some desired distributions, and the posterior

distributions of the model parameters can be numerically evaluated by sampling the stationary

part of the Markov Chain. This is achieved by first drawing a long enough sequence of the

Markov Chain samples to reach the steady-state (warming-up phase), the samples of which

are discarded, and then continue generating new samples (sampling phase) to estimate the

posterior distributions. The main advantage of this method is that it can model a wide range of

functional forms (linear and non-linear), kernel functions, and prior distributions but it can be

computationally slow, due to its sampling of the spatially varying terms, and prudence is required

to ensure that the steady-state of the Markov Chain has been reached.

STAN can be accessed directly from a command-line terminal (CmdStan), or through interfaces

for many of the popular computing environments (Python, R, MATLAB, Mathematica, ect.). For

this project, Python interfaces have been developed based on the PyStan (Riddell et al., 2021)

and CmdStanPy packages, however the user can execute the STAN code (* . s t an ) through any
other interface, or as-is through the terminal window. Pythonwas chosen because it is free, open-

source, and widely adopted in the scientific and engineering communities.

In the following, Section 6.1 provides a general overview of the STAN, syntax, code structure, and

functions & options used in the development of NGMMs, and Section 6.2 summarizes the main

components of the Python wrapper functions. For more information on STAN, visit also https:
//mc-stan.org/.
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6.1 OVERVIEW OF STAN

6.1.1 General syntax

STAN follows the C++ syntax. All expressions need to be terminated with a semicolon ( ; ). Any

characters after two forward slashes ( / / ) are ignored by the compiler; they are understood as

comments. Curly brackets ( { . . . } ) may be used to group expressions and define local variables.

In the remainder of the section, the ellipses points ( . . . ) is used to indicated omitted code that is

unimportant for the presented examples.

In STAN all variables need to be declared by defining their type and size. For scalar variables, the

most common types are i n t Va r I n t and r e a l Va rRea l which declare V a r I n t as a integer

scalar and Va rRea l real scalar, respectively. Arrays of these types can be created by starting

with the a r r a y argument. For example, a r r a y [N ] i n t Vec I n t is a one-dimensional array

of integers of size N, while a r r a y [N ,M] r e a l VecRea l is a two-dimensional array of real

numbers of size N byM. Real-type column vectors and real-type matrices can also be declared as

ve c to r [N ] VecRea l and matr i x [N ,M] MatReal . Alternatively, following the old syntax

(prior to 2.26 STAN) vectors are declared by defining the size of the vector after the variable type

(e.g. r e a l [N ] VecRea l ), and matrices are declared by defining the number of columns after

the variable type and the number of rows after the variable name r e a l [M] MatReal [N ] . The

old syntax is not recommenced when writing new regression scripts, but it is mentioned here in

case an old regression script is encountered.

An important variable type used in the NGMM development is a Compressed Sparse Row (CSR)

matrixwhich is used to store the cell-path distancematrix for the cell-specific anelastic attenuation

as it is sparse and contains a lot of zeros. A CSR matrix can be defined by three one-dimensional

arrays: the values of the non-zero elements (V), column indices of the non-zero elements (W), and

indices of V corresponding to new rows. Although there are build in function to compute V,W,

andWin STAN, the current implementation of the NGMM tools performs this calculation in the

Python wrapper functions, presented in Section 6.2

Upper and lower limits for the range of variables are specified as r e a l < lower = low_ l imt ,

upper = up_l im > A where l ow_ l im t and up_ l im are the lower and upper limit values,

respectively.

6.1.2 Regression File Structure

A STAN regression file is broken into program blocks each of them with a specific scope.

The most commonly used porgram blocks are: data , transformed data , parameters ,
transformed parameters , and model as follows:

data {
// . . . input data . . .

}
transformed data {

// . . . cons tant s and modi f i ed data . . .
}
parameters {
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// . . . model parameters . . .
}
transformed parameters {

// . . . modi f i ed parameters . . .
}
model {

// . . . s t a t i s t i c a l model . . .
}

The data block declares and contains all the required input variables used in the regressionmodel.
The transformed data block offers a space for the declaration and calculation of additional
input variables based on the variables in the data block. It can also be used to define and declare
any constants. The parameters block declares all the model parameters, such as the non-ergodic
coefficients, hyper-parameters, and aleatory terms, which will be sampled directly from the

MCMC STAN sampler. The transformed parameters block allows for the definition of additional
parameters, used in the model fit, which are based on the variables in data , transformed data ,
and parameters . The parameters in transformed parameters are sampled indirectly based
on the sampled values of the parameters in parameters . The model block defines the statistical
model and computes the log-likelihood. The data and transformed data blocks are executed
only once at the beginning, while the blocks parameters , transformed parameters , and model
are executed in every iteration of the MCMC sampler. The variables declared in parameters ,
transformed parameters are saved at the end of every iteration and can be used to estimate
the posterior distributions.

6.1.3 Specification of Prior Distributions

STAN supports many distribution families for use as prior distributions. Any parameter that is

assigned a prior distribution needs to be declared in parameters block, and then, in the model
block, it is is assigned a prior distribution using the tilde symbol ∼ followed by the name of the
distribution family and the values of parameters.

Commonly used prior distributions for the development of NGMMs in STAN are: the log-normal,

inverse-gamma, and exponential distributions.

Log-normal distribution:

In cases where the existence of the random effect and the range of their standard deviation is

known, a log-normal prior distribution for the standard deviation is a common choice, as it is only

defined in the positive part of the real numbers and most of its mass is away from zero. The

probability density function of a log-normal distribution is:

π(σ) =
1√

2π σL

1

σ
exp

(
−1

2

(log(σ)− µL)
2

σ2
L

)
(6.1)

where µL and σL is the mean and standard deviation in log scale. In arithmetic scale, the mean of
a log-normal distribution is: exp(µL+σL/2). Syntax for assigning the log-normal prior distribution
is:

sigma ∼ lognormal (mu_L, sigma_L) ;
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where mu_L and sigma_L are µL and σL, respectively. In NGMM development, a log-normal

distribution is used as a prior for the aleatory standard deviations phi_0 and tau_0.

Inverse-gamma distribution:

The probability density function of an inverse-gamma distribution is defined as:

π(`) =
βα

Γ(α)
σ−(α+1) exp

(
−β
`

)
(6.2)

whereα is the shape, β is the scale parameter, and Γ()̇ is the Gamma function. Bothα and β must
be positive. Forα > 1 themean of an inverse-gamma distribution is β/(α−1). An inverse-gamma
distribution is assigned in STAN with:

sigma ∼ inv_gamma( alpha , beta )

In NGMMs, inverse-gamma prior distributions are commonly used for modeling the correlation

length of the spatially varying terms, such as: `1,E and `1a,S .

Exponential Distribution:

An exponential prior distribution can be used to regularize a particular parameter so as not to

have large values, if there is not significant evidence in the data. This prior distribution is often

employed when modeling non-ergodic effects that their existence is unknown ahead of time. An

example of using it in NGMMs is modeling the scales in the kernel function of spatially varying

terms. The probability density function of an exponential distribution is:

π(σ) = λ exp(−λσ) (6.3)

where λ is the rate. The mean and the standard deviation of an exponential distribution are 1/λ
In STAN, an exponential prior distribution is invoked with:

sigma ∼ exponent i a l ( lambda )

Hierarchical Priors:

In STAN, defining a hierarchical model, where parameters of the prior distribution of a model

variable (lower level) are assigned their own prior distributions (upper level), is done simply by

specifying the different levels of prior distributions in succession, starting from the highest and

going towards the lowest level. The following example shows the declaration and definition of

the prior distribution for the between event residuals:

parameters {
//Aleatory Terms
rea l<lower=0> tau_0 ;
vec to r [NEQ] dB ;

. . .
}
model{

. . .
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// Pr i o r s f o r a l e a t o ry terms
tau_0 ∼ lognormal ( - 1 , 0 . 3 ) ;
dB ∼ normal (0 , tau_0 ) ;

. . .
}

The standard deviation of the between-event residuals (tau_0) is declared as a real number with
a zero lower limit. The between-event residuals (dB) is defined as real valued vector of sizeNEQ,
whereNEQ is the number of unique events. At the upper level, tau_0 is assigned a log-normal prior
distribution with a log mean of 0.1 and standard-deviation in log space of 0.3, while at the lower
level, dB is assigned a normal prior distribution with zero mean and standard deviation tau_0.

6.1.4 Specification of Random Effects

Random effects can be easily modeled in STAN as independently and identically distributed (iid)

latent variables which are applied to the corresponding group of observations based on group

indices. For example, δB0
e is modeled as a vector of iid latent variables (dB) of size NEQ, which

follows a normal distribution with zero mean and tau_0 standard deviation. The elements of dB
are assigned to the appropriate ground motion observation based on the earthquake indices eq.
As an example of the eq structure, if the twentieth to thirtieth ground motion are associated with
the second event, the twentieth to thirtieth element in eq will be equal to two.

parameters {
//Aleatory Terms
rea l<lower=0> tau_0 ;
vec to r [NEQ] dB ;
. . .

}
model{

//Between event r e s i d u a l s
dB ∼ normal (0 , tau_0 ) ;
. . .

//Mean non - e rgod i c i n c l ud ing dB
rec_nerg_dB = . . . + dB [ eq ] ;

}

6.1.5 Specification of Spatially Varying Coefficients

The spatially varying coefficients are defined by using a multi-normal prior distribution and

explicitly computing their mean (~µ) and kernel (κ(~t, ~t′)) functions:

δ~c ∼ MN
(
~µ, κ(~t, ~t′)

)
(6.4)
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The exponential and squared-exponential kernel functions are common choices for modeling

spatially varying non-ergodic effects in STAN due to their simple functional form.

κ(~t, ~t′) = σ2 exp

(
−||~t− ~t′||

`

)
(6.5)

κ(~t, ~t′) = σ2 exp

(
−||~t− ~t′||2

`2

)
(6.6)

σ control the size, and ` controls the length scale of the non-ergodic effects. To reduce the
computational cost, the kernel functions are evaluated at the unique event or station locations

and are distributed to their associated ground-motions based on the event and station indices.

Additionally, to improve the regression efficiency: (i) the event-to-event and station-to-station

distances are precomputed in the transformed data block, which is only executed once, and (ii)
the spatially varying terms are sampled indirectly based on standard normally distributed random

samples. In particular, in STAN, the standard normally distributed random variables are sampled in

the model block, and the spatially varying terms are computed in the transformed parameters
block by multiplying the lower Cholesky decomposition of the covariance matrix with the

aforemetnioned standard normally distributed samples.

The following example shows the calculation of the spatially varying earthquake term, δc1,E:

transformed data {
r e a l d e l t a = 1e - 8 ;

//compute d i s t an c e s
matrix [NEQ, NEQ] dist_e ;
. . .

//compute earthquake d i s t an c e s
f o r ( i in 1 :NEQ) {

f o r ( j in i :NEQ) {
r e a l d_e = d i s t anc e (X_e[ i ] ,X_e [ j ] ) ;
d i st_e [ i , j ] = d_e ;
dist_e [ j , i ] = d_e ;

}

. . .
}
parameters {

// Epistemic Uncerta inty Terms
rea l<lower=0.0> e l l_1e ;
r ea l <lower=0.0> omega_1e ;
. . .

// s tandard ized normal v a r i a b l e s f o r s p a t i a l l y c o r r e l a t e d c o e f f i c i e n t s
vec to r [NEQ] z_1e ;
. . .

}
transformed parameters {

// s p a t i a l l y c o r r e l a t e d c o e f f i c i e n t s
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vec to r [NEQ] dc_1e ; // s p a t i a l l y vary ing eq c o e f f
. . .

// s p a t i a l l y l a t e n t va r i ab l e f o r event c on t r i bu t i on s to GP
{

matrix [NEQ,NEQ] COV_1e;
matrix [NEQ,NEQ] L_1e ;
f o r ( i in 1 :NEQ) {

// d iagona l terms
COV_1e[ i , i ] = omega_1e^2 + de l t a ;
// o f f - d iagona l terms
f o r ( j in ( i +1) :NEQ) {

r e a l C_1e = (omega_1e^2 * exp ( - dist_e [ i , j ] / e l l_1e ) ) ;
COV_1e[ i , j ] = C_1e ;
COV_1e[ j , i ] = C_1e ;

}
}
L_1e = cholesky_decompose (COV_1e) ;
dc_1e = L_1e * z_1e ;

}

. . .
}
model {

//non - e rgod i c hyper - parameters
e l l_1e ∼ inv_gamma ( 2 . , 5 0 ) ;
omega_1e ∼ exponent i a l ( 5 ) ;
. . .

// s tandard ized event c on t r i bu t i on s to GP
z_1e ∼ std_normal ( ) ;

. . .

//Mean non - e rgod i c i n c l ud ing dB
rec_nerg_dB = . . . + dc_1e [ eq ] + . . . ;

}

The distances between all event pairs are computed with the d i s t ance (X_e[ i ] ,X_e [ j ] ) and
stored in dist_e [ i , j ] , where X_e is a vector with the event coordinates. In the parameters
block, the correlation length and scale hyper-parameters e l l_1e and omega_1e are declared and
are assigned a zero lower limit because negative values are undefined. The standard normal

samples used for the calculation of the spatially varying event terms are declared as z_1e. In the
transformed parameters block, the spatially varying earthquake constant is declared as dc_1e.
To reduce the computational cost, the upper triangular part of the covariance matrix COV_1e is
evaluated directly using the negative exponential functional form, while the lower triangular part

is filled based on the values of the upper part. L_1e, which is lower Cholesky decomposition of
COV_1e, is computed using the cholesky_decompose ( ) function. The samples of the spatially
varying earthquake constant are generated by multiplying L_1e with dc_1e. Finally, in the model
block, the prior distributions of the hyper-parameters and standard normal variables are first

defined, and then the elements of dc_1e are distributed to their associated groundmotions using
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the event indices.

6.1.6 Specification of Anelastic Attenuation

In STAN, ~cca,P can be modeled either with spatial correlation between neighbouring cells, or as
independent from cell to cell. In the first case, the covariance matrix of ~cca,P is computed in

the model block to impose the spatial correlation, and ~cca,P are drawn from a multi-normal prior

distribution. In the second case, ~cca,P are drawn as iid samples from a normal prior distribution.

In both cases, a zero upper limit is applied to ~cca,P to ensure proper extrapolation.

~cca,P ∼ MN
(
µca,p, κ(~tC , ~t′C)

)
T (, 0) (6.7)

A composite kernel function is used for the spatially correlated case that is the sum of an

exponential and spatially independent kernel function:

κca,P (~tC , ~t′C) = ω2
ca1,P exp

(
−||~tC − ~t′C ||

`ca1,P

)
+ ωca2,P δ(||~tC − ~t′C ||) (6.8)

The exponential kernel function captures the underlining continuous variation of anelastic

attenuation over large areas, while the spatially independent kernel function captures local

changes of anelastic attenuation from cell to cell. The size and length scale of the regional

component of ~cca,P is captured by ωca1,P , and `ca1,P , respectively, while the size of local
component of ~cca,P is captured by ωca1,P .

The next example shows the modeling of the spatially correlated cell-specific anelastic

attenuation:

parameters {
. . .
// at tenuat ion c e l l s
r ea l <upper=0.0> mu_cap ;
r ea l <lower=0.0> el l_ca1p ;
r ea l <lower=0.0> omega_ca1p ;
r ea l <lower=0.0> omega_ca2p ;

. . .
// c e l l - s p e c i f i c a t t enuat ion
vector<upper=0>[NCELL] c_cap ;

. . .
}
model {

. . .
// e f f e c t a n e l a s t i c a t t enuat ion
vec to r [N] i na t t en ;

. . .
// c e l l s p e c i f i c a t t enuat ion hyper - parameters
mu_cap ∼ normal ( c_a_erg , 0 . 01 ) ; //mean an e l a s t i c a t t enuat ion
e l l_ca1p ∼ inv_gamma ( 2 . , 5 0 ) ;
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omega_ca1p ∼ exponent i a l (250) ;
omega_ca2p ∼ exponent i a l (250) ;

. . .
// c e l l a t t enuat ion
// generate l a t e n t v a r i a b l e s f o r s p a t i a l l y c o r r e l a t e d
// a n e l a s t i c a t t enuat ion c e l l s
{

matrix [NCELL, NCELL] COV_cap;
f o r ( i in 1 :NCELL) {

// d iagona l terms
COV_cap[ i , i ] = omega_ca1p^2 + omega_ca2p^2 + de l t a ;
// o f f - d iagona l terms
f o r ( j in ( i +1) :NCELL) {

r e a l C_cap = (omega_ca1p^2 * exp ( - dist_c [ i , j ] / e l l_ca1p ) ) ;
COV_cap[ i , j ] = C_cap ;
COV_cap[ j , i ] = C_cap ;

}
}
c_cap ∼ multi_normal ( rep_vector (mu_cap ,NCELL) ,COV_cap) ;

}

// a n e l a s t i c a t t enuat ion
ina t t en = csr_matrix_times_vector (N, NCELL, RC_val , RC_w, RC_u, c_cap ) ;

//Mean non - e rgod i c i n c l ud ing dB
rec_nerg_dB = . . . + ina t t en + . . . ;
. . .

}

The mean of the prior distribution (mu_cap), scale and correlation lengths of the spatially
varying component (omega_ca1p and e l l_ca1p ), scale of the spatially independent component
(omega_ca2p), and vector of anelastic attenuation coefficients (c_cap) are declared in the

parameter block. mu_cap and c_cap are assigned a zero upper limit to ensure a physically
defensible behaviour. omega_ca1p, e l l_ca1p , and omega_ca2p are assigned a zero lower limit as
negative values of these parameters are undefined.

In the model block, i na t t en , which is a vector of size equal to number of ground motions, is
initialized to store the effect of anelastic attenuation in the median ground motion. mu_cap is
given a normal prior distribution centered around the value of the ergodic anelastic attenuation;

a 0.01 standard deviation is used to allow for some adjustment of mu_cap from the ergodic

value based on the re-weighting of the residuals. e l l_ca1p is assigned an inverse gamma

prior distribution with shape and scale parameters equal to 2.0 and 50 which results in a
wide prior with a 10 to 140km range for the 5th to 95th quantiles. The scales omega_ca1p
and omega_ca2p are assigned an exponential prior distribution with 150 rate to penalize

unnecessary complexity if the data do not support large variations of anelastic attenuation

from cell to cell. The covariance matrix of ~cca,P is computed next and stored in COV_cap;
similar to covariance matrices of the spatially varying terms, the upper triangular part of

c_cap is computed explicitly from the covariance function while the lower-triangular part

is filled based on elements in the upper part. The prior distribution of ~cca,P is defined in
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c_cap ∼ multi_normal ( rep_ vecto r (mu_cap ,NCELL) ,COV_cap) . In this case, ~cca,P is sampled
directly from a multi-normal distribution with a mu_cap mean and COV_cap covariance matrix,
instead of using a standard normal distribution and the Cholesky decomposition of the covariance

matrix, to enforce the upper limit constraint. The effect of anelastic attenuation in the median

ground motion is computed by the product of cell-path segment length matrix (R) and ~cca,P . To
improve the computational efficiency, R is stored in a CSR matrix format and the multiplication

is performed with the csr_matrix_times_ vecto r (N, NCELL, RC_val , RC_w, RC_u, c_cap )
function; the first two arguments (NandNCELL) define the size ofR, RC_val contains the non-zero
elements of R, RC_w contains the column indices of the non-zero elements, and RC_u contains
the indices of the RC_val elements which start each new row.

6.1.7 Specification of Likelihood Function

The likelihood function is specified similarly to the prior distributions using the ∼ symbol, the
name of the distribution family, and the distribution parameters. Since, for the regression, the

effect of the between event residuals is included in the mean, the likelihood function is equal to

the probability density function of a normal distribution with the sum of the median non-ergodic

groundmotion andbetween-event residuals as themean, and thewithin-event aleatory variability

as the standard deviation.

Y ∼ normal ( rec_nerg_dB , phi_0 ) ;

where Y is the array of the regression residuals as defined in Chapter 3 for each NGMM type,

rec_nerg_dB the sum of the median non-ergodic ground motion and between-event residuals,

and phi_0 is the within-event standard deviation.

6.2 PYTHON-STAN REGRESSION FOR NGMMS

The Python interface functions implemented here can be divided into three main sections:

• pre-processing to format the input files for the STAN regression code,

• regression to call the STAN MCMC sampler and pass the input data, and

• post-processing to extract the regression output and summarize the posterior

distributions.

The Python wrapper function for the type-1 NGMM is presented in Section 6.2.1, and the

modifications for the type-2 and type-3 NGMM wrapper functions are provided in Sections 6.2.2

and 6.2.3, respectively. The wrapper functions using CMDSTAN and Pystan libraries, are

located respectively in gmm_tools/Analyses / Python_lib/ r e g r e s s i o n /cmdstan, and

gmm_tools/Analyses /Python_lib/ r e g r e s s i o n /pystan .

6.2.1 Python wrapper function for Type-1 NGMM

The function RunStan implemented in regression_cmdstan_model1_unbounded_hyp . py is

used to run the type-1 NGMM GP regression with three main sections explained next.

50



Pre-processing:

The mandatory input arguments are as follows.

• d f _ f l a t f i l e is the ground-motion regression dataframe that contains the source and
site information (event ID, station ID, event coordinates, site coordinates), and total

regression residuals,

• stan_model_fname contains the name of the STAN regression file,

• out_fname defines the names of the output files, and

• out_dir defines the location of the output directory.

The optional input arguments are as follows.

• res_name is the column name of the regression residuals in d f _ f l a t f i l e (default value
is ’ r e s ’),

• n_iter_warmup is the number of iterations for the MCMC warm-up phase (default value
is 300),

• n_iter_sampling is the number of MCMC sampling iterations for the calculation of the
posterior distributions (default value is 300),

• n_chains is the number of independently sampled MCMC chains (default value is 4),

• max_treedepth controls maximum number of evaluations per sample ( default value is

10),

• adapt_delta is the target average proposal acceptance probability of the No-U-Turn
Sampler (NUTS) in STAN (default value is 0 .8 ), and

• s t an_pa ra l l e l is the option for multi-thread execution of the STAN regression ( default
is False ).

The maximum number of evaluations during each iteration is defined by the max_treedepth as
10^max_treedepth. The s t an_pa ra l l e l option has been added for future-proofing the python
functions but it requires the STAN regression codes to be rewritten for multi-thread execution

which has not been implemented yet. Information on the parallelization of STAN can be found on

Stan Development Team (2022).

The code in Listing 6.1 summarizes the source and site information as well as the total regression

residuals. As shown, first, the record sequence number (RSN) is set as the index column in

d f _ f l a t f i l e and the number of ground motions is stored in n_data. data_eq_all is a matrix
of n_data by four, containing the event IDs, magnitude, and event coordinates in UTM for all

ground motion records. Based on the event IDs, the row indices that correspond to the unique

values (eq_idx) and inverse indices (eq_inv) to reconstruct the event IDs from the unique values

are calculated. data_eq contains the event information for all unique events, and X_eq contains
all unique earthquake coordinates. The event indices, which are used in STAN to distribute the

non-ergodic earthquake terms to all ground motions, are stored in eq_id; a unit is added on all
elements as Python uses a base zero index system while STAN uses a base one index system.

The event-to-event distance for all pairs of unique earthquakes is computed and is checked to
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be larger than 5e -5 to ensure that there are no collocated events to avoid singular covariance
matrices for the event terms. Similarly, data_sta_al l matrix contains the Station IDs, VS30,
and station coordinates in UTM for all ground motion records. The indices of data_sta_al l
corresponding to unique stations are stored in sta_idx , and the inverse indices to reconstruct the
station IDs array for all ground motions from the unique values are stored in sta_inv . data_sta
contains the station information, and X_sta contains the coordinates for all unique stations. The
station indices to distribute the station terms to all ground motions in STAN are stored in sta_id .
Lastly, it is checked that there are no collocated stations based on the station-to-station distance.

y_data is an array with the regression residuals for all ground motions.

## Preproces s Input Data
#============================
#se t rsn column as dataframe index , sk ip i f r sn a l r eady the index
i f not d f _ f l a t f i l e . index . name == ’ rsn ’ :

d f _ f l a t f i l e . set_index ( ’ rsn ’ , drop=True , i np l a c e=True )
#number o f data
n_data = len ( d f _ f l a t f i l e )

#earthquake data
data_eq_all = d f _ f l a t f i l e [ [ ’ eq id ’ , ’mag ’ , ’ eqX ’ , ’ eqY ’ ] ] . va lue s
_, eq_idx , eq_inv = np . unique ( d f _ f l a t f i l e [ [ ’ eq id ’ ] ] . va lues , ax i s =0,

re turn_inver se=True , return_index=True )
data_eq = data_eq_all [ eq_idx , : ]
X_eq = data_eq [ : , [ 2 , 3 ] ] #earthquake coo rd ina t e s
#c r ea t e earthquake i d s f o r a l l r e co rd s (1 to n_eq)
eq_id = eq_inv + 1
n_eq = len ( data_eq )
#v e r i f y no c o l l o c a t e d events
eq_dist_min = np . min ( [ np . l i n a l g . norm(x_eq - np . d e l e t e (X_eq , k , ax i s=0) ,

ax i s=1) . min ( )
f o r k , x_eq in enumerate (X_eq) ] )

a s s e r t ( eq_dist_min > 5e - 5 ) , ’ Error . S ingu la r covar iance matrix due
to c o l l o c a t e d events ’

#s t a t i o n data
data_sta_al l = d f _ f l a t f i l e [ [ ’ s sn ’ , ’ Vs30 ’ , ’ staX ’ , ’ staY ’ ] ] . va lue s
_, sta_idx , sta_inv = np . unique ( d f _ f l a t f i l e [ [ ’ s sn ’ ] ] . va lues , ax i s = 0 ,

re turn_inver se=True , return_index=True )
data_sta = data_sta_al l [ sta_idx , : ]
X_sta = data_sta [ : , [ 2 , 3 ] ] #s t a t i o n coo rd ina t e s
#c r ea t e s t a t i o n i n d i c e s f o r a l l r e co rd s (1 to n_sta )
sta_id = sta_inv + 1
n_sta = len ( data_sta )
#v e r i f y no c o l l o c a t e d s t a t i o n s
sta_dist_min = np . min ( [ np . l i n a l g . norm( x_sta - np . d e l e t e (X_sta , k , ax i s=0) ,

ax i s=1) . min ( )
f o r k , x_sta in enumerate (X_sta ) ] )

a s s e r t ( sta_dist_min > 5e - 5 ) , ’ Error . S ingu la r covar iance matrix due
to c o l l o c a t e d s t a t i o n s ’

#ground - motion obs e rva t i on s
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y_data = d f _ f l a t f i l e [ res_name ] . to_numpy ( ) . copy ( )

Listing 6.1. Preprocessing section of type-1 NGMM STAN regression file. Input data organization

The Listing 6.2 summarizes the input data to be passed to STAN. All data required for the regression

are grouped in the stan_data dictionary, with the key of each element corresponding to the
variable name in the STAN regression code. The input data are saved as a Jason file on the disk

with cmdstanpy . u t i l s . write_stan_json ( stan_data_fname , stan_data ) to be read by STAN
to perform the regression.

The STAN input variables are:

• N: number of ground-motion records,

• NEQ: number of unique events,

• NSTAT: number of unique stations,

• eq: array with event indices to distribute the earthquake terms to all ground motions,

• s t a t : array with station indices to distribute the station terms to all ground motions,

• X_e: matrix with event coordinates,

• X_s: matrix with station coordinates,

• rec_mu: array with log of median ergodic ground motion, and

• Y: array with the log ground motion observations.

The STAN regression code can be executed either with the log of ground motion observation

values inY and the log median ergodic ground motion values in rec_mu, or with the total ergodic
regression residuals inY and an array of zeros in rec_mu.

#stan data
stan_data = { ’N ’ : n_data ,

’NEQ’ : n_eq ,
’NSTAT’ : n_sta ,
’ eq ’ : eq_id ,
’ s t a t ’ : sta_id ,
’X_e ’ : X_eq ,
’X_s ’ : X_sta ,
’ rec_mu ’ : np . z e r o s ( y_data . shape ) ,
’Y ’ : y_data ,

}
stan_data_fname = out_dir + out_fname + ’_stan_data ’ + ’ . j son ’

#c r ea t e output d i r e c t o r y
pa th l i b . Path ( out_dir ) . mkdir ( parents=True , exist_ok=True )

#wr i t e as j son f i l e
cmdstanpy . u t i l s . write_stan_json ( stan_data_fname , stan_data )

Listing 6.2. Preprocessing section of type-1 NGMM STAN regression file. STAN input

Regression:
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The Listing 6.3 compiles the STAN code and runs the regression. If the variable s t an_pa ra l l e l
is True and the number of independent chains is less than the number of CPU cores, STAN is
complied with the multi-threading option enabled. The link to the compiled code is represented

by the stan_model object. The Bayesian regression is performed with the . sample ( . . . ) method
of the STAN object, with the following arguments.

• data specifies the file name of the input data.

• cha ins specifies the number of independent chains.

• iter_warmup & i t e r_sampl ing specify the number of iterations for the warmup and
sampling phase of the MCMC sampler.

• seed initializes the random number generator for the reproducibility of the regression.

• max_treedepth defines the maximum number of evaluations of the posterior

distribution during each iteration (10^max_treedepth).

• adapt_delta specifies the average proposal acceptance probability of the NUTS STAN
sampler.

• output_dir defines the directory of the temporary output files.

• show_progress can be set True to show the progress on the STAN sampler during the
regression.

For the multithread execution of the STAN, the cpp_options={”STAN_THREADS” : True })
argument should be specified in the . CmdStanModel ( . . . ) method, and the number of CPU
cores per chain (threads_per_chain) should be specified in the . sample ( . . . ) method.

## Run Stan , f i t model
#============================
#number o f co r e s
n_cpu = max( cpu_count ( ) -1 ,1 )

#run stan
i f ( not s t an_pa ra l l e l ) or n_cpu<=n_chains :

#compile stan model
stan_model = cmdstanpy . CmdStanModel ( s t an_ f i l e=stan_model_fname )
stan_model . compi le ( f o r c e=True )
#run f u l l MCMC sampler
s t an_f i t = stan_model . sample ( data=stan_data_fname , cha ins=n_chains ,

iter_warmup=n_iter_warmup ,
i ter_sampl ing=n_iter_sampling ,
seed=1, max_treedepth=max_treedepth ,
adapt_delta=adapt_delta ,
output_dir=out_dir+’ s t an_f i t / ’ ,
show_progress=True )

e l s e :
#compile stan model
stan_model = cmdstanpy . CmdStanModel ( s t an_ f i l e=stan_model_fname ,

cpp_options={”STAN_THREADS” : True })
stan_model . compi le ( f o r c e=True )
#number o f co r e s per chain
n_cpu_chain = in t (np . f l o o r (n_cpu/n_chains ) )
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#run f u l l MCMC sampler
s t an_f i t = stan_model . sample ( data=stan_data_fname , cha ins=n_chains ,

iter_warmup=n_iter_warmup ,
i ter_sampl ing=n_iter_sampling ,
seed=1, max_treedepth=max_treedepth ,
adapt_delta=adapt_delta ,
output_dir=out_dir+’ s t an_f i t / ’ ,
show_progress=True ,
threads_per_chain=n_cpu_chain )

Listing 6.3. Regression section of type-1 NGMM STAN regression file.

Post-processing:

Listing 6.4 summarizes MCMC sampling from the posterior distributions of all NGMM parameters

and hyper-parameters using df_stan_posterior_raw . col_names_hyp defines the column

names in df_stan_posterior_raw for the samples of hyper-parameters. col_names_dc_1e,
col_names_dc_1as, and col_names_dc_1bs specify the column names for the non-ergodic
earthquake and station terms (δc1,E , δc1a,S , and δc1b,S), and col_names_dB specifies the column
names for the between event residuals.

TheMCMCsamples are extracted from the STAN regressionobjectwith s t an_f i t . s tan_var iab le
(var_name) method, where var_name is the name of the variable in the STAN code. The

line np . s tack ( [ s t an_f i t . s tan_var iab le (c_n) f o r c_n in col_names_hyp ] , ax i s=1)
extracts the hyper-parameter samples and stores them in the s tan_pos te r i o r matrix. The next
three lines extract the δc1,E , δc1a,S , and δc1b,S posterior samples for all event and station locations
(separate column for each unique event and station) and append them to s tan_pos te r i o r .
Line np . concatenate ( ( s tan_poster io r , s t an_f i t . s tan_var iab le ( ’dB ’ ) ) , ax i s=1)
extracts the δB0

e samples (separate column for each unique event) and adds them to the

end of the s tan_pos te r i o r . Then, the sampled matrix is converted into a pandas dataframe
in pd . DataFrame ( stan_poster io r , columns = col_names_all ) and is saved as comma

separated valued file (CSV) in df_stan_posterior_raw . to_csv ( out_dir + out_fname +
’ _stan_posterior_raw ’ + ’ . csv ’ , index=False ) with the ’ _stan_posterior_raw . csv ’
suffix.

## Postproce s s ing Data
#============================
## Extract p o s t e r i o r samples
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#hyper - parameters
col_names_hyp = [ ’dc_0 ’ , ’ e l l_1e ’ , ’ e l l_1as ’ , ’ omega_1e ’ , ’ omega_1as ’ , ’ omega_1bs ’ ,

’ phi_0 ’ , ’ tau_0 ’ ]

#non - e rgod i c terms
col_names_dc_1e = [ ’ dc_1e.% i ’%(k ) f o r k in range (n_eq) ]
col_names_dc_1as = [ ’ dc_1as.% i ’%(k ) f o r k in range ( n_sta ) ]
col_names_dc_1bs = [ ’ dc_1bs.% i ’%(k ) f o r k in range ( n_sta ) ]
col_names_dB = [ ’dB.% i ’%(k ) f o r k in range (n_eq) ]
col_names_all = col_names_hyp + col_names_dc_1e + col_names_dc_1as +

col_names_dc_1bs + col_names_dB
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#summarize raw po s t e r i o r d i s t r i b u t i o n s
s tan_pos te r i o r = np . s tack ( [ s t an_f i t . s tan_var iab le (c_n)

f o r c_n in col_names_hyp ] , ax i s=1)
#adjustment terms
s tan_pos te r i o r = np . concatenate ( ( s tan_poster io r ,

s t an_f i t . s tan_var iab le ( ’ dc_1e ’ ) ) , ax i s=1)
s tan_pos te r i o r = np . concatenate ( ( s tan_poster io r ,

s t an_f i t . s tan_var iab le ( ’ dc_1as ’ ) ) , ax i s=1)
s tan_pos te r i o r = np . concatenate ( ( s tan_poster io r ,

s t an_f i t . s tan_var iab le ( ’ dc_1bs ’ ) ) , ax i s=1)
s tan_pos te r i o r = np . concatenate ( ( s tan_poster io r ,

s t an_f i t . s tan_var iab le ( ’dB ’ ) ) , ax i s=1)

#save raw - p o s t e r i o r d i s t r i b u t i o n
df_stan_posterior_raw = pd . DataFrame ( stan_poster io r , columns = col_names_all )
df_stan_posterior_raw . to_csv ( out_dir+out_fname+’ _stan_posterior_raw ’+’ . csv ’ ,

index=False )
Listing 6.4. Post-processing section of type-1 NGMM STAN regression file. Hyper-parameter

summary.

The Listing 6.5 shows the part of the code that organizes the posterior distributions of

the hyper-parameters in the df_stan_hyp dataframe. The array perc_array defines the

percentiles of the posterior distributions to be reported, and the . quan t i l e ( ) method

of the df_stan_posterior_raw dataframe computes the hyper-parameter values at the

corresponding percentiles. The mean values of the hyper-parameters are computed at

df_stan_posterior_raw [ col_names_hyp ] . mean( ax i s = 0) and appended in df_stan_hyp.
df_stan_hyp is saved on the computer disk as a CSV file with the ’ _stan_hyperposter ior . csv ’
suffix.

## Summarize hyper - parameters
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#summarize p o s t e r i o r d i s t r i b u t i o n s o f hyper - parameters
perc_array = np . array ( [ 0 . 0 5 , 0 . 2 5 , 0 . 5 , 0 . 7 5 , 0 . 9 5 ] )
df_stan_hyp = df_stan_posterior_raw [ col_names_hyp ] . quan t i l e ( perc_array )
df_stan_hyp = df_stan_hyp . append (

df_stan_posterior_raw [ col_names_hyp ] . mean( ax i s=0) ,
ignore_index=True )

df_stan_hyp . index = [ ’ prc_%.2 f ’%(prc ) f o r prc in perc_array ]+[ ’mean ’ ]
df_stan_hyp . to_csv ( out_dir+out_fname+’ _stan_hyperparameters ’+’ . csv ’ ,

index=True )

#de t a i l e d p o s t e r i o r p e r c e n t i l e s o f p o s t e r i o r d i s t r i b u t i o n s
perc_array = np . arange ( 0 . 0 1 , 0 . 9 9 , 0 . 0 1 )
df_stan_poster ior = df_stan_posterior_raw [ col_names_hyp ] . quan t i l e ( perc_array )
df_stan_poster ior . index . name = ’ prc ’
d f_stan_poster ior . to_csv ( out_dir+out_fname+’ _stan_hyperposter ior ’+’ . csv ’ ,

index=True )

de l col_names_dc_1e , col_names_dc_1as , col_names_dc_1bs , col_names_dB
de l s tan_poster io r , col_names_all

Listing 6.5. Post-processing section of type-1 NGMM STAN regression file. Hyper-parameter
summary.
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The Listing 6.6 summarizes the posterior distributions for the non-ergodic coefficients. The

coeff_0_mu, coeff_0_med, and coe f f_0_sig contain the posterior mean, median, and standard
deviation values for c0. The coeff_1e_mu, coeff_1e_med, and coe f f_1e_s ig contain the mean,
median, and standard deviation values of c1,E for all ground motions. The coeff_1as_mu,
coeff_1as_med, and coe f f_1as_s ig contain the mean, median, and standard deviation values
of c1a,S . The coeff_1bs_mu, coeff_1bs_med, and coe f f_1bs_s ig contain the mean, median,
and standard deviation values of c1a,S for all ground motions. The posterior mean of the aleatory
standard deviations (φ0 and τ0) are stored in phi_0_array and tau_0_array.

The variables in the preceding paragraph are summarized in df_coeffs_summary along with the
event ID, station ID, earthquake coordinates, and station coordinates and saved as a CSV file with

the ’ _ s t an_coe f f i c i en t s . csv ’ suffix.

# GMM c o e f f i c i e n t s
#- - - - - - - - - - - - - - - - - - - - - - - -
#constant s h i f t c o e f f i c i e n t
coeff_0_mu = df_stan_posterior_raw . l o c [ : , ’ dc_0 ’ ] . mean ( ) * np . ones ( n_data )
coeff_0_med = df_stan_posterior_raw . l o c [ : , ’ dc_0 ’ ] . median ( ) * np . ones ( n_data )
coe f f_0_sig = df_stan_posterior_raw . l o c [ : , ’ dc_0 ’ ] . s td ( ) * np . ones ( n_data )

#s p a t i a l l y vary ing earthquake constant c o e f f i c i e n t
coeff_1e_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1e . { k} ’ ] . mean ( )

f o r k in range (n_eq) ] )
coeff_1e_mu = coeff_1e_mu [ eq_inv ]
coeff_1e_med = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1e . { k} ’ ] . median ( )

f o r k in range (n_eq) ] )
coeff_1e_med = coeff_1e_med [ eq_inv ]
coe f f_1e_s ig = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1e . { k} ’ ] . s td ( )

f o r k in range (n_eq) ] )
coe f f_1e_s ig = coe f f_1e_s ig [ eq_inv ]

#s i t e term constant covar iance
coeff_1as_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1as . { k} ’ ] . mean ( )

f o r k in range ( n_sta ) ] )
coeff_1as_mu = coeff_1as_mu [ sta_inv ]
coeff_1as_med = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1as . { k} ’ ] . median ( )

f o r k in range ( n_sta ) ] )
coeff_1as_med = coeff_1as_med [ sta_inv ]
coe f f_1as_s ig = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1as . { k} ’ ] . s td ( )

f o r k in range ( n_sta ) ] )
coe f f_1as_s ig = coe f f_1as_s ig [ sta_inv ]

#s p a t i a l l y vary ing s t a t i o n constant covar iance
coeff_1bs_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1bs . { k} ’ ] . mean ( )

f o r k in range ( n_sta ) ] )
coeff_1bs_mu = coeff_1bs_mu [ sta_inv ]
coeff_1bs_med = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1bs . { k} ’ ] . median ( )

f o r k in range ( n_sta ) ] )
coeff_1bs_med = coeff_1bs_med [ sta_inv ]
coe f f_1bs_s ig = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1bs . { k} ’ ] . s td ( )

f o r k in range ( n_sta ) ] )
coe f f_1bs_s ig = coe f f_1bs_s ig [ sta_inv ]
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# al ea t o ry v a r i a b i l i t y
phi_0_array=np . array ( [ df_stan_posterior_raw . phi_0 .mean ( ) ] * X_sta_all . shape [ 0 ] )
tau_0_array=np . array ( [ df_stan_posterior_raw . tau_0 .mean ( ) ] * X_sta_all . shape [ 0 ] )

#i n i t i a i z e f l a t f i l e f o r sumamry o f non - erg c o e f f i c i n e t s and r e s i d u a l s
d f_ f l a t i n f o = d f _ f l a t f i l e [ [ ’ eq id ’ , ’ s sn ’ , ’ eqLat ’ , ’ eqLon ’ , ’ s taLat ’ , ’ staLon ’ ,

’ eqX ’ , ’ eqY ’ , ’ staX ’ , ’ staY ’ , ’UTMzone ’ ] ]

#summary c o e f f i c i e n t s
coeffs_summary = np . vstack ( ( coeff_0_mu ,

coeff_1e_mu ,
coeff_1as_mu ,
coeff_1bs_mu ,
coeff_0_med ,
coeff_1e_med ,
coeff_1as_med ,
coeff_1bs_med ,
coef f_0_sig ,
coef f_1e_sig ,
coe f f_1as_sig ,
coe f f_1bs_s ig ) ) .T

columns_names = [ ’dc_0_mean ’ , ’dc_1e_mean ’ , ’ dc_1as_mean ’ , ’ dc_1bs_mean ’ ,
’dc_0_med ’ , ’dc_1e_med ’ , ’ dc_1as_med ’ , ’dc_1bs_med ’ ,
’ dc_0_sig ’ , ’ dc_1e_sig ’ , ’ dc_1as_sig ’ , ’ dc_1bs_sig ’ ]

df_coeffs_summary = pd . DataFrame ( coeffs_summary , columns = columns_names ,
index=d f _ f l a t f i l e . index )

#c r ea t e dataframe with summary c o e f f i c i e n t s
df_coeffs_summary = pd . merge ( d f_ f l a t i n f o , df_coeffs_summary , how=’ r i gh t ’ ,

l e f t_ index=True , r ight_index=True )
df_coeffs_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] =

df_coeffs_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] . astype ( i n t )
df_coeffs_summary . to_csv ( out_dir + out_fname + ’ _s tan_coe f f i c i en t s ’ + ’ . csv ’ ,

index=True )
Listing 6.6. Post-processing section of type-1 NGMM STAN regression file. Non-ergodic

coefficients summary.

Listing 6.7 organizes the non-ergodic residuals. y_mu computes the median non-ergodic

adjustment to the ground motion that is equal to the sum of all the non-ergodic terms. The

total non-ergodic residuals are calculated by subtracting y_mu from the total ergodic residuals.

The within-event residuals (res_within ) are extracted directly from the STAN regression, and

the between event residuals are calculated by subtracting the between event residuals from the

total non-ergodic residuals. The median non-ergodic adjustment, and all non-ergodic residuals

are summarized in the df_predict_summary dataframe which is saved as a CSV file under the
’ _stan_res iduals . csv ’ suffix.

# GMM pred i c t i on
#- - - - - - - - - - - - - - - - - - - - - - - -
#mean p r ed i c t i on
y_mu = ( coeff_0_mu + coeff_1e_mu + coeff_1as_mu + coeff_1bs_mu )

#compute r e s i d u a l s
res_tot = y_data - y_mu

58



#r e s i d u a l s computed d i r e c t l y from stan r e g r e s s i o n
res_between = [ df_stan_posterior_raw . l o c [ : , f ’dB. { k} ’ ] . mean ( )

f o r k in range (n_eq) ]
res_between = np . array ( [ res_between [ k ] f o r k in ( eq_inv ) . astype ( i n t ) ] )
res_within = res_tot - res_between

#summary p r ed i c t i o n s and r e s i d u a l s
predict_summary = np . vstack ( (y_mu, res_tot , res_between , res_within ) ) .T
columns_names = [ ’nerg_mu ’ , ’ res_tot ’ , ’ res_between ’ , ’ res_within ’ ]
df_predict_summary = pd . DataFrame ( predict_summary , columns = columns_names ,

index=d f _ f l a t f i l e . index )
#c r ea t e dataframe with p r e d i c t i o n s and r e s i d u a l s
df_predict_summary = pd . merge ( d f_ f l a t i n f o , df_predict_summary , how=’ r i gh t ’ ,

l e f t_ index=True , r ight_index=True )
df_predict_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] =

df_predict_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] . astype ( i n t )
df_predict_summary . to_csv ( out_dir + out_fname + ’ _stan_res iduals ’ + ’ . csv ’ ,

index=True )
Listing 6.7. Post-processing section of type-1 NGMM STAN regression file. Ground motion

summary.

Lastly, Listing 6.8 prints out the summary statistics of the regression fit, and plots the posterior

distributions of the hyper-parameters. The summary of the regression is saved as plain text files

with the ’_stan_summary . txt ’ suffix. Additionally, for each hyper-parameter, the posterior
distribution and trace plot of each chain is plotted using the Arviz Python package. These figures
can be used to visually inspect the quality of the regression looking for convergence and for

good mixing between the independent chains. As an example, Figure 6.1 shows the posterior

distribution and trace plot of φ0 estimated from the first synthetic ground-motion realization of

NGAWest3*. The posterior distributions of the MCMC chains do not show big differences and

the trace plots exhibit stationary behavior and overlap among different chains, showing a good

regression fit.

## Summary r e g r e s s i o n
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#save summary s t a t i s t i c s
stan_summary_fname = out_dir + out_fname + ’_stan_summary ’ + ’ . txt ’
with open ( stan_summary_fname , ’w ’ ) as f :

p r i n t ( s t an_f i t . summary ( ) , f i l e=f )

#c r ea t e and save t r a c e p l o t s
f i g_d i r = out_dir + ’ summary_figs/ ’
#c r ea t e f i g u r e s d i r e c t o r y i f doesn ’ t e x i t
pa th l i b . Path ( f i g_d i r ) . mkdir ( parents=True , exist_ok=True )

#c r ea t e stan t r a c e p l o t s
stan_az_f it = az . from_cmdstanpy ( s tan_f i t , p o s t e r i o r_p r ed i c t i v e=’Y ’ )
f o r c_name in col_names_hyp :

#c r ea t e t r a c e p l o t with a rv i z
ax = az . p lot_trace ( stan_az_fit , var_names=c_name , f i g s i z e =(10 ,5) ) . r av e l ( )
ax [ 0 ] . yax i s . set_major_locator ( p l t_autot i ck ( ) )
ax [ 0 ] . s e t_x labe l ( ’ sample va lue ’ )
ax [ 0 ] . s e t_y labe l ( ’ f r equency ’ )
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ax [ 0 ] . s e t_ t i t l e ( ’ ’ )
ax [ 0 ] . g r id ( ax i s=’ both ’ )
ax [ 1 ] . s e t_x labe l ( ’ i t e r a t i o n ’ )
ax [ 1 ] . s e t_y labe l ( ’ sample va lue ’ )
ax [ 1 ] . g r id ( ax i s=’ both ’ )
ax [ 1 ] . s e t_ t i t l e ( ’ ’ )
f i g = ax [ 0 ] . f i g u r e
f i g . s u p t i t l e (c_name)
f i g . s a v e f i g ( f i g_d i r + out_fname + ’ _stan_traceplot_ ’ + c_name +

’ _arviz ’ + ’ . png ’ )
Listing 6.8. Post-processing section of type-1 NGMM STAN regression file. Ground motion

summary.

Figure 6.1. Posterior distribution and trace plot of φ0 for NGAWest3
* CA synthetic dataset Y1.

6.2.2 Python wrapper function for Type-2 NGMM

This section presents the modifications to Section 6.2.1 to run the NGMM type-2 STAN regression.

Thepythonwrapper functions for this regression are implemented in regression_cmdstan_model2
_uncorr_cells_sparse_unbounded_hyp . py for the uncorrelated attenuation cells, and in

regression_cmdstan_model2_corr_cells_sparse_unbounded_hyp . py for the partially

correlated attenuation cells cases. Again, the implemented code has three main sections to be

discussed next.

Pre-processing:

In addition to the input arguments specified in Section 6.2.1, mandatory input arguments for the

NGMM tyre-2 regression are as follows.

• d f_ c e l l i n f o contains the information about the cell IDs and coordinates (Section 4.2),

• d f_ c e l l d i s t contains the information about the path segment length over each cell for
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every ground motion in the regression flatfile, and

• c_a_erg is the ergodic value of the anelastic attenuation coefficient.

The additional pre-processing steps in type-2 NGMM as compared to type-1 NGMM is related

to processing the anelastic attenuation cells as shown in Listing 6.9. First, if they are not set

already, the RSN column is set as the index column in d f_ c e l l d i s t and the cell ID column
is set as an index column in d f_ c e l l i n f o . Then, the cell-path distance dataframe is reduced
to the columns that correspond to the ground-motions in d f _ f l a t f i l e . The IDs and names
of all cells are stored in c e l l_ i d s_a l l and ce l l_names_al l , respectively, and the cell-path
distance matrix for all cells is stored in c e l l d i s t _ a l l . Only the cells with at least one

crossing are used in the regression to reduce the computational cost, and are identified in

i_ c e l l s_va l i d = np . where ( c e l l d i s t _ a l l . sum( ax i s=0) > 0) [ 0 ] ) line. The IDs and names
of these cells are contained in c e l l_ id s_va l i d and cel l_names_val id , while c e l l d i s t_v a l i d
contains the reduced cell-path distance segment matrix. c e l l d i s t_v a l i d is converted into

a sparse CSR format in c e l l d i s t_va l i d_sp = spar s e . csr_matrix ( c e l l d i s t_v a l i d ) . The

mid-point coordinates of the cells with at least one cell crossing are stored in X_cel l s_val id .

i f not d f_ c e l l d i s t . index . name == ’ rsn ’ :
d f_ c e l l d i s t . set_index ( ’ rsn ’ , drop=True , i np l a c e=True )

#se t c e l l i d column as dataframe index , sk ip i f c e l l i d a l r eady the index
i f not d f_ c e l l i n f o . index . name == ’ c e l l i d ’ :

d f_ c e l l i n f o . set_index ( ’ c e l l i d ’ , drop=True , i np l a c e=True )

#c e l l data
#reo rde r and only keep re co rd s inc luded in the f l a t f i l e
d f_ c e l l d i s t = d f_ c e l l d i s t . r e index ( d f _ f l a t f i l e . index )
#c e l l i n f o
c e l l_ i d s_a l l = d f_ c e l l i n f o . index
ce l l_names_al l = d f_ c e l l i n f o . ce l lname
#c e l l d i s t ance matrix
c e l l d i s t _ a l l = d f_ c e l l d i s t [ ce l l_names_al l ]
#f i nd c e l l with more than one paths
i_c e l l s_va l i d = np . where ( c e l l d i s t _ a l l . sum( ax i s=0) > 0) [ 0 ]
c e l l_ id s_va l i d = c e l l_ i d s_a l l [ i_ c e l l s_va l i d ]
cel l_names_val id = cel l_names_al l [ i_ c e l l s_va l i d ]
c e l l d i s t_v a l i d = c e l l d i s t _ a l l . l o c [ : , ce l l_names_val id ] . to_numpy ( )
c e l l d i s t_va l i d_sp = spar s e . csr_matrix ( c e l l d i s t_v a l i d )
#number o f c e l l s
n_ce l l = c e l l d i s t _ a l l . shape [ 1 ]
n_ce l l_va l id = c e l l d i s t_v a l i d . shape [ 1 ]
#c e l l c oo rd ina t e s
X_cel l s_val id = d f_ c e l l i n f o . l o c [ i_ce l l s_va l i d , [ ’mptX ’ , ’mptY ’ ] ] . va lue s

Listing 6.9. Preprocessing section of type-2 NGMM STAN regression file. Cell-specific anelastic
attenuation.

The Listing 6.10 summarizes the STAN input data for the NGMM type-2 regression. The additional

input variables are:

• NCELL: number of cells.

• NCELL_SP: number of non-zero elements in the cell-path distance matrix.
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• RC_val: array with the non-zero elements of the cell-path distance matrix.

• RC_w: array of the column indices of the non-zero cell-path distance matrix elements.

• RC_u: array of indices of the RC_val elements, which starts each new row.

• c_a_erg: the ergodic value of anelastic attenuation.

stan_data = { ’N ’ : n_data ,
’NEQ’ : n_eq ,
’NSTAT’ : n_sta ,
’NCELL ’ : n_cel l_val id ,
’NCELL_SP ’ : l en ( c e l l d i s t_va l i d_sp . data ) ,
’ eq ’ : eq_id ,
’ s t a t ’ : sta_id ,
’X_e ’ : X_eq ,
’X_s ’ : X_sta ,
’X_c ’ : X_cel ls_val id ,
’ rec_mu ’ : np . z e r o s ( y_data . shape ) ,
’RC_val ’ : c e l l d i s t_va l i d_sp . data ,
’RC_w’ : c e l l d i s t_va l i d_sp . i n d i c e s +1,
’RC_u ’ : c e l l d i s t_va l i d_sp . indptr+1,
’ c_a_erg ’ : c_a_erg ,
’Y ’ : y_data ,

}

Listing 6.10. Preprocessing section of type-2 NGMM STAN regression file. STAN Input.

Regression:

The execution of the STAN regression is identical to the execution of the STAN regression for

NGMM type-1.

Post-processing:

The anelastic attenuation coefficients for the NGMM type-2 regression are summarized in

Listing 6.11. Mean, median, and standard deviation of the posterior distributions of the

anelastic attenuation coefficients are stored in cells_ca_mu, cells_ca_med, and c e l l s_ca_s ig ,
respectively. Similarly, the mean and median impact as well as the epistemic uncertainty on

the ground motion due to the cell-specific anelastic attenuation is computed in cells_LcA_mu,
cells_LcA_med, and cel ls_LcA_sig ; the mean and the median impact are calculated

by multiplying the cell-path distance matrix ( c e l l d i s t_va l i d_sp ) with cells_ca_mu and

cells_ca_med. The ground-motion epistemic uncertainty due to the cell-specific anelastic

attenuation is computed as the square root of the c e l l d i s t_va l i d_sp elements squared

multiplied by the squared elements of c e l l s_ca_s ig .

The posterior distribution statistics of the anelastic attenuation cells are summarized

in df_catten_summary together with the cell ID, name, and coordinate information.

df_catten_summary is saved as a CSV file with the ’ _stan_catten . csv ’ suffix.

# GMM an e l a s t i c a t t enuat ion
#- - - - - - - - - - - - - - - - - - - - - - - -
cells_ca_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , ’ c_cap.% i ’%(k ) ] . mean ( )

f o r k in c e l l_ id s_va l i d ] )
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cells_ca_med = np . array ( [ df_stan_posterior_raw . l o c [ : , ’ c_cap.% i ’%(k ) ] . median ( )
f o r k in c e l l_ id s_va l i d ] )

c e l l s_ca_s ig = np . array ( [ df_stan_posterior_raw . l o c [ : , ’ c_cap.% i ’%(k ) ] . s td ( )
f o r k in c e l l_ id s_va l i d ] )

#e f f e c t o f a n e l a s t i c a t t enuat ion in GM
cells_LcA_mu = ce l l d i s t_va l i d_sp @ cells_ca_mu
cells_LcA_med = ce l l d i s t_va l i d_sp @ cells_ca_med
cel ls_LcA_sig = np . sq r t ( c e l l d i s t_va l i d_sp . power (2 ) @ ce l l s_ca_s i g **2)

#summary at tenuat ion c e l l s
catten_summary = np . vstack ( ( np . t i l e ( c_a_erg , n_ce l l_va l id ) ,

cells_ca_mu ,
cells_ca_med ,
c e l l s_ca_s ig ) ) .T

columns_names = [ ’ c_a_erg ’ , ’ c_cap_mean ’ , ’ c_cap_med ’ , ’ c_cap_sig ’ ]
df_catten_summary = pd . DataFrame ( catten_summary , columns = columns_names ,

index=d f_ c e l l i n f o . index [ i_c e l l s_va l i d ] )
#c r ea t e dataframe with summary at tenuat ion c e l l s
df_catten_summary = pd . merge ( d f_ c e l l i n f o [ [ ’ ce l lname ’ , ’mptLat ’ , ’mptLon ’ ,

’mptX ’ , ’mptY ’ , ’mptZ ’ , ’UTMzone ’ ] ] ,
df_catten_summary ,
how=’ r i gh t ’ , l e f t_ index=True , r ight_index=True )

df_catten_summary . to_csv ( out_dir + out_fname + ’ _stan_catten ’ + ’ . csv ’ ,
index=True )

Listing 6.11. Post-processing section of type-2 NGMM STAN regression file. Cell-specific anelastic
attenuation coefficient summary.

The summary of the non-ergodic ground motion for the NGMM type-2 (Listing 6.12) is organized

similarly to the summary of non-ergodic groundmotion for theNGMMtype-1. Themain difference

is in the calculation of the median non-ergodic adjustment (y_mu) that includes the effect of the
anelastic attenuation.

# GMM pred i c t i on
#- - - - - - - - - - - - - - - - - - - - - - - -
#mean p r ed i c t i on
y_mu = ( coeff_0_mu + coeff_1e_mu + coeff_1as_mu + coeff_1bs_mu + cells_LcA_mu)

#compute r e s i d u a l s
res_tot = y_data - y_mu
#r e s i d u a l s computed d i r e c t l y from stan r e g r e s s i o n
res_between = [ df_stan_posterior_raw . l o c [ : , f ’dB. { k} ’ ] . mean ( )

f o r k in range (n_eq) ]
res_between = np . array ( [ res_between [ k ] f o r k in ( eq_inv ) . astype ( i n t ) ] )
res_within = res_tot - res_between

#summary p r ed i c t i o n s and r e s i d u a l s
predict_summary = np . vstack ( (y_mu, res_tot , res_between , res_within ) ) .T
columns_names = [ ’nerg_mu ’ , ’ res_tot ’ , ’ res_between ’ , ’ res_within ’ ]
df_predict_summary = pd . DataFrame ( predict_summary , columns = columns_names ,

index=d f _ f l a t f i l e . index )
#c r ea t e dataframe with p r e d i c t i o n s and r e s i d u a l s
df_predict_summary = pd . merge ( d f_ f l a t i n f o , df_predict_summary , how=’ r i gh t ’ ,
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l e f t_ index=True , r ight_index=True )
df_predict_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] =

df_predict_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] . astype ( i n t )
df_predict_summary . to_csv ( out_dir + out_fname + ’ _stan_res iduals ’ + ’ . csv ’ ,

index=True )
Listing 6.12. Post-processing section of type-2 NGMM STAN regression file. Ground motion

summary.

6.2.3 Python wrapper function for Type-3 NGMM

This subsection presents the modification of the STAN code for the NGMM type-3 regression. The

python wrapper functions are implemented in regression_cmdstan_model3_uncorr_cells_
sparse_unbounded_hyp . py for the uncorrelated attenuation cells, and in regression_cmdstan_model3_
corr_cells_sparse_unbounded_hyp . py for the partially correlated attenuation cells, with the
following main sections.

Pre-processing:

The extra optional input arguments for NGMM-type3 are:

• c_2_erg: The ergodic value of the geometrical spreading coefficient (default value is 0).

• c_3_erg: The ergodic value of the VS30 scaling (default value is 0).

Furthermore, the ground-motion regression dataframemust include the columns x_2 and x_3 for
the geometrical spreading and VS30 scaling.

The additional preprocessing steps are shown in Listing 6.13. The x_2 stores the geometrical
spreading scaling for all groundmotions and the x_3 stores the VS30 scaling for all unique stations.

#geomet r i ca l spread ing c ova r i a t e s
x_2 = d f _ f l a t f i l e [ ’x_2 ’ ] . va lue s
#vs30 c ova r i a t e s
x_3 = d f _ f l a t f i l e [ ’x_3 ’ ] . va lue s [ sta_idx ]

Listing 6.13. Preprocessing section of type-3 NGMM STAN regression file. Geometrical spreading
and VS30 scaling.

The input STAN variables are presented in Listing 6.14. The extra input variables for the NGMM

type-3 regression are listed below.

• x_2: array of sizeN containing the geometrical spreading terms.

• x_3: array of sizeNSTAT containing the VS30 scaling terms.

• c_2_erg: the ergodic value for geometrical spreading.

• c_3_erg: the ergodic value for VS30 scaling.

stan_data = { ’N ’ : n_data ,
’NEQ’ : n_eq ,
’NSTAT’ : n_sta ,
’NCELL ’ : n_cel l_val id ,
’NCELL_SP ’ : l en ( c e l l d i s t_va l i d_sp . data ) ,
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’ eq ’ : eq_id ,
’ s t a t ’ : sta_id ,
’ rec_mu ’ : np . z e r o s ( y_data . shape ) ,
’Y ’ : y_data ,
’x_2 ’ : x_2 ,
’x_3 ’ : x_3 ,
’ c_2_erg ’ : c_2_erg ,
’ c_3_erg ’ : c_3_erg ,
’ c_a_erg ’ : c_a_erg ,
’X_e ’ : X_eq ,
’X_s ’ : X_sta ,
’X_c ’ : X_cel ls_val id ,
’RC_val ’ : c e l l d i s t_va l i d_sp . data ,
’RC_w’ : c e l l d i s t_va l i d_sp . i n d i c e s +1,
’RC_u ’ : c e l l d i s t_va l i d_sp . indptr+1,

}

Listing 6.14. Preprocessing section of type-3 NGMM STAN regression file. STAN Input.

Regression:

The STAN regression section is the same as those for NGMM type-1 and NGMM type-2.

Post-processing:

The posterior distribution statistics of the the non-ergodic coefficients are summarized in

Listing 6.15. The mean, median, and standard deviation of c2,P are described in coeff_2p_mu,
coeff_2p_med, and coef f_2p_sig , while the mean, median, and standard deviation of c3,S are
described in coeff_2s_mu, coeff_2s_med, and coe f f_2s_s ig . All non-ergodic coefficients for
the NGMM type-3 regression are summarized in df_coeffs_summary dataframe which is saved
as a CSV file.

# GMM c o e f f i c i e n t s
#- - - - - - - - - - - - - - - - - - - - - - - -
#constant s h i f t c o e f f i c i e n t
coeff_0_mu = df_stan_posterior_raw . l o c [ : , ’ dc_0 ’ ] . mean ( ) * np . ones ( n_data )
coeff_0_med = df_stan_posterior_raw . l o c [ : , ’ dc_0 ’ ] . median ( ) * np . ones ( n_data )
coe f f_0_sig = df_stan_posterior_raw . l o c [ : , ’ dc_0 ’ ] . s td ( ) * np . ones ( n_data )

#s p a t i a l l y vary ing earthquake constant c o e f f i c i e n t
coeff_1e_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1e . { k} ’ ] . mean ( )

f o r k in range (n_eq) ] )
coeff_1e_mu = coeff_1e_mu [ eq_inv ]
coeff_1e_med = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1e . { k} ’ ] . median ( )

f o r k in range (n_eq) ] )
coeff_1e_med = coeff_1e_med [ eq_inv ]
coe f f_1e_s ig = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1e . { k} ’ ] . s td ( )

f o r k in range (n_eq) ] )
coe f f_1e_s ig = coe f f_1e_s ig [ eq_inv ]

#s i t e term constant covar iance
coeff_1as_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1as . { k} ’ ] . mean ( )

f o r k in range ( n_sta ) ] )
coeff_1as_mu = coeff_1as_mu [ sta_inv ]
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coeff_1as_med = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1as . { k} ’ ] . median ( )
f o r k in range ( n_sta ) ] )

coeff_1as_med = coeff_1as_med [ sta_inv ]
coe f f_1as_s ig = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1as . { k} ’ ] . s td ( )

f o r k in range ( n_sta ) ] )
coe f f_1as_s ig = coe f f_1as_s ig [ sta_inv ]

#s p a t i a l l y vary ing s t a t i o n constant covar iance
coeff_1bs_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1bs . { k} ’ ] . mean ( )

f o r k in range ( n_sta ) ] )
coeff_1bs_mu = coeff_1bs_mu [ sta_inv ]
coeff_1bs_med = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1bs . { k} ’ ] . median ( )

f o r k in range ( n_sta ) ] )
coeff_1bs_med = coeff_1bs_med [ sta_inv ]
coe f f_1bs_s ig = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ dc_1bs . { k} ’ ] . s td ( )

f o r k in range ( n_sta ) ] )
coe f f_1bs_s ig = coe f f_1bs_s ig [ sta_inv ]

#s p a t i a l l y vary ing geomet r i ca l spread ing c o e f f i c i e n t
coeff_2p_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ c_2p . { k} ’ ] . mean ( )

f o r k in range (n_eq) ] )
coeff_2p_mu = coeff_2p_mu [ eq_inv ]
coeff_2p_med = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ c_2p . { k} ’ ] . median ( )

f o r k in range (n_eq) ] )
coeff_2p_med = coeff_2p_med [ eq_inv ]
coef f_2p_sig = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ c_2p . { k} ’ ] . s td ( )

f o r k in range (n_eq) ] )
coef f_2p_sig = coef f_2p_sig [ eq_inv ]

#s p a t i a l l y vary ing Vs30 c o e f f i c i e n t
coeff_3s_mu = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ c_3s . { k} ’ ] . mean ( )

f o r k in range ( n_sta ) ] )
coeff_3s_mu = coeff_3s_mu [ sta_inv ]
coeff_3s_med = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ c_3s . { k} ’ ] . median ( )

f o r k in range ( n_sta ) ] )
coeff_3s_med = coeff_3s_med [ sta_inv ]
coe f f_3s_s ig = np . array ( [ df_stan_posterior_raw . l o c [ : , f ’ c_3s . { k} ’ ] . s td ( )

f o r k in range ( n_sta ) ] )
coe f f_3s_s ig = coe f f_3s_s ig [ sta_inv ]

# a l e a t o ry v a r i a b i l i t y
phi_0_array = np . array ( [ df_stan_posterior_raw . phi_0 .mean ( ) ] * X_sta_all . shape [ 0 ] )
tau_0_array = np . array ( [ df_stan_posterior_raw . tau_0 .mean ( ) ] * X_sta_all . shape [ 0 ] )

#i n i t i a i z e f l a t f i l e f o r sumamry o f non - erg c o e f f i c i n e t s and r e s i d u a l s
d f_ f l a t i n f o = d f _ f l a t f i l e [ [ ’ eq id ’ , ’ s sn ’ , ’ eqLat ’ , ’ eqLon ’ , ’ s taLat ’ , ’ staLon ’ ,

’ eqX ’ , ’ eqY ’ , ’ staX ’ , ’ staY ’ , ’UTMzone ’ ] ]

#summary c o e f f i c i e n t s
coeffs_summary = np . vstack ( ( coeff_0_mu ,

coeff_1e_mu ,
coeff_1as_mu ,
coeff_1bs_mu ,
coeff_2p_mu ,
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coeff_3s_mu ,
cells_LcA_mu ,
coeff_0_med ,
coeff_1e_med ,
coeff_1as_med ,
coeff_1bs_med ,
coeff_2p_med ,
coeff_3s_med ,
cells_LcA_med ,
coef f_0_sig ,
coef f_1e_sig ,
coe f f_1as_sig ,
coef f_1bs_sig ,
coef f_2p_sig ,
coe f f_3s_s ig ,
cel ls_LcA_sig ) ) .T

columns_names = [ ’dc_0_mean ’ , ’dc_1e_mean ’ , ’ dc_1as_mean ’ , ’ dc_1bs_mean ’ ,
’ c_2p_mean ’ , ’ c_3s_mean ’ , ’Lc_ca_mean ’ ,
’dc_0_med ’ , ’dc_1e_med ’ , ’ dc_1as_med ’ , ’dc_1bs_med ’ ,
’c_2p_med ’ , ’ c_3s_med ’ , ’Lc_ca_med ’ ,
’ dc_0_sig ’ , ’ dc_1e_sig ’ , ’ dc_1as_sig ’ , ’ dc_1bs_sig ’ ,
’ c_2p_sig ’ , ’ c_3s_sig ’ , ’ Lc_ca_sig ’ ]

df_coeffs_summary = pd . DataFrame ( coeffs_summary , columns = columns_names ,
index=d f _ f l a t f i l e . index )

#c r ea t e dataframe with summary c o e f f i c i e n t s
df_coeffs_summary = pd . merge ( d f_ f l a t i n f o , df_coeffs_summary , how=’ r i gh t ’ ,

l e f t_ index=True , r ight_index=True )
df_coeffs_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] =

df_coeffs_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] . astype ( i n t )
df_coeffs_summary . to_csv ( out_dir + out_fname + ’ _s tan_coe f f i c i en t s ’ + ’ . csv ’ ,

index=True )
Listing 6.15. Post-processing section of type-3 NGMM STAN regression file. Non-ergodic

coefficients summary.

The non-ergodic ground motion summary is shown in Listing 6.16. The mean non-ergodic

adjustment includes the effects of the non-ergodic geometrical spreading and non-ergodic VS30
scaling with coeff_2p_mu*x_2 and coeff_3s_mu*x_3 [ sta_inv ] .

# GMM pred i c t i on
#- - - - - - - - - - - - - - - - - - - - - - - -
#mean p r ed i c t i on
y_mu = ( coeff_0_mu + coeff_1e_mu + coeff_1as_mu + coeff_1bs_mu +

coeff_2p_mu*x_2 + coeff_3s_mu*x_3 [ sta_inv ] + cells_LcA_mu)

#compute r e s i d u a l s
res_tot = y_data - y_mu
#r e s i d u a l s computed d i r e c t l y from stan r e g r e s s i o n
res_between = [ df_stan_posterior_raw . l o c [ : , f ’dB. { k} ’ ] . mean ( )

f o r k in range (n_eq) ]
res_between = np . array ( [ res_between [ k ] f o r k in ( eq_inv ) . astype ( i n t ) ] )
res_within = res_tot - res_between

#summary p r ed i c t i o n s and r e s i d u a l s
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predict_summary = np . vstack ( (y_mu, res_tot , res_between , res_within ) ) .T
columns_names = [ ’nerg_mu ’ , ’ res_tot ’ , ’ res_between ’ , ’ res_within ’ ]
df_predict_summary = pd . DataFrame ( predict_summary , columns = columns_names ,

index=d f _ f l a t f i l e . index )
#c r ea t e dataframe with p r e d i c t i o n s and r e s i d u a l s
df_predict_summary = pd . merge ( d f_ f l a t i n f o , df_predict_summary , how=’ r i gh t ’ ,

l e f t_ index=True , r ight_index=True )
df_predict_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] =

df_predict_summary [ [ ’ eq id ’ , ’ s sn ’ ] ] . astype ( i n t )
df_predict_summary . to_csv ( out_dir + out_fname + ’ _stan_res iduals ’ + ’ . csv ’ ,

index=True )
Listing 6.16. Post-processing section of type-3 NGMM STAN regression file. Ground motion

summary.
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7 DEVELOPMENT OF NON-ERGODIC GROUND
MOTION MODELS WITH R-INLA COMPUTER
PLATFORM

The Integrated Nested Laplace Approximation (INLA) is an efficient method for approximating

posterior distributions in Bayesian inference, providing an alternative to other methods such

as MCMC. R-INLA (Rue et al., 2009) is a package that has implemented this method for Latent

Gaussian Models (LGMs) in the open-source statistical software platform R (R Core Team, 2021).

Non-ergodic GMMs belong to this family of models as the total non-ergodic effects can be

expressed as the sum of linear additive terms (δL2L, δS2S, and δP2P ), which follow Gaussian
distributions. Additionally, to efficiently approximate the Gaussian random fields of the spatially

varying terms, INLA expresses them as stochastic partial differential equations (SPDEs, Lindgren

et al., 2011) and evaluates them using the finite element method.

For more details on spatial modeling in R-INLA, see also Lindgren and Rue (2015) and Lindgren

et al. (2021), as well as Franco-Villoria et al. (2019). For more information on INLA, see also

https://www.r-inla.org/, which provides general information, installation instructions, links to
papers/tutorials, as well as to a google group.

7.1 GENERAL OVERVIEW OF R-INLA FUNCTIONS

This section is intended to provide a general overview of the INLA functionality and commands

before presenting the regression codes for the development of the non-ergodic GMMs type-1 to

type-3 in Section 7.2.

7.1.1 Regression Formula

The syntax for fitting regression models with INLA is similar to the syntax for fitting regression

models with the lm ( ) function. A regression formula ( formula) is used to define the structure
of the statistical model. The response variable is on the left-hand side of∼, and the fixed effects,
random effects, and spatially varying coefficients are on the right-hand side. Similar to the formula

in lm ( ) , adding 0 in the right-hand side removes the intercept from the model. The regression

formula for the type-1 regression is:
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form_i n l a_s p a t i a l <- y ∼ 0 + in t e r c e p t +
f ( eq , model=” i i d ” , hyper=p r i o r_tau_0) +
f ( sta , model=” i i d ” , hyper=p r i o r_omega_1bs ) +
f ( idx . eq , model = spde_eq ) +
f ( idx . sta , model = spde_sta )

In this example, the intercept is first removed with 0 and then added back with i n t e r c e p t .
By doing so, the default priors for the intercept will be the same as those for the other fixed

effects. Subsections 7.1.2 to 7.1.7 provide further details and examples regarding the specification

of prior distributions, random effects, spatially varying effects, cell-specific anelastic attenuation,

organization of the regression data, and regression function.

The interested reader is also referred to Gómez-Rubio (2020); Krainski et al. (2019, 2021); Moraga

(2019) for additional information regarding GP regression with INLA and examples of spatial

models.

7.1.2 Specification of Prior Distributions

In setting the prior distributions in INLA, it is important to know how the hyper-parameters

are internally represented. For instance, the standard deviations of Normal distributions are

represented internally by the precision, the reciprocal of the squared standard deviation, in

log-scale (log(1/σ2)). Information on the internal representation of the hyper-parameters of the
different likelihood functions and distributions can be accessed with i n l a . doc ( ’name ’ ) where
’name ’ is a string with the name of the likelihood function of the distribution.

The list of all implementedprior distributions canbe seenby typing names ( i n l a . models ( ) $ p r i o r ) .
By default, the intercept of themodel is assigned a Gaussian prior distributionwith zeromean and

zero precision, and the remaining fixed effects are assigned Gaussian prior distributions with zero

mean and 0.01 precision. The values of these priors can be changed through the c on t r o l . f i x e d
argument in i n l a ( ) .

p r i o r_f i x ed <- l i s t (mean . i n t e r c e p t = i n t e r_mean ,
prec . i n t e r c e p t = i n t e r_prec ,
mean = ( l i s t ( x1=x1_mean , d e f au l t=de f_mean) ) ,
prec = ( l i s t ( x1=x1_prec , d e f au l t=de f_prec ) ) )

i n l a_f i t <- i n l a ( y∼x1+x2+x3 , data = data ,
c on t r o l . f i x e d = pr i o r_f i x ed ) )

The list p r i o r_f i x ed contains the information regarding the prior distributions of the fixed effects
which is passed to i n l a ( ) . i n t e r_mean and i n t e r_prec are the mean and log precision values
of the Gaussian prior distribution for the intercept, x1_mean and x1_prec are the mean and log
precision values of the Gaussian prior distribution for x_1, and de f_mean and de f_prec update
the mean and log precision default values for the Gaussian prior distribution of the remaining

covariates not assigned a prior distribution individually.

Multi-level prior distributions can be defined by specifying the higher-level distribution in the

c on t r o l . f i x e d arguments. In this case, the parameters of the lower-level distribution are not
fixed but vary based on the upper-level distribution. In the following case, the log precision of the

intercept is assigned a log-gamma distribution with 0.8 and 0.5 parameters.

70



p r i o r_i n t e r_prec <- l i s t ( prec = l i s t ( p r i o r = ”loggamma” ,
param = c ( 0 . 8 , 0 . 5 ) ) )

p r i o r_f i x ed <- l i s t ( prec . i n t e r c e p t = p r i o r_i n t e r_prec )

i n l a_f i t <- i n l a ( y∼x1+x2+x3 , data = data ,
c on t r o l . f i x e d = pr i o r_f i x ed ) )

Commonly used prior distributions in INLA for the development of NGMMS are the log-gamma

distribution, the penalized-complexity prior for precision, and the penalized-complexity joint prior

for correlation length and scale of a Matérn kernel function.

Log-gamma distribution:

The gamma distribution is often used as the prior distribution for the precision parameter of a

normal distribution in Bayesian statistics. The Gamma distribution is the conjugate prior, meaning

that the posterior distribution also follows a Gamma distribution. Assuming a Gamma prior for

the precision means an inverse-Gamma distribution as the prior for the variance. The inverse-

Gammadistributionhas themajority of itsmass away from zeromaking it a suitable priorwhen the

existence of the model effects and the range of their standard deviation are known form previous

studies. Random effects that fall into this group are the between-event and within-event aleatory

terms and the site-independent constant site term. In all these cases, there is an abundance of

previous literature demonstrating the existence of these effects in ground motion and reporting

the range of typical values. Internally, INLA uses the log precision; thus, assigning a log-gamma

prior distribution implies a prior gamma distribution for the precision (τ ). The probability density
function of a gamma distribution is given by:

π(τ) =
bα

Γ(α)
τα−1exp(−bτ) (7.1)

where α > 0 is the shape parameter and b > 0 is the inverse-scale parameter. The mean of the
distribution is equal to α/b, and the variance is equal to α/b2.

Penalized-complexity prior:

The penalized-complexity prior for the precision is used tomodel a random effect that is unknown

whether it exists if it has an effect the median ground motion. In this case, if the data do not

support the existence of the random effect, the penalized-complexity prior promotes a posterior

distribution that has most of its mass near zero when looking at the standard deviation or at very

large values, when looking at the precision, to avoid overfitting. When there is significant evidence

in the data, the mass of the posterior distribution deviates from zero, when looking at standard

deviation, to allow accepting a wide range of random effect values.

The probability density function for the penalized complexity prior is:

π(τ) =
λ

2
τ−3/2 exp

(
λτ−1/2

)
, τ > 0 (7.2)

where λ > 0 is the distribution parameter. Internally, the precision penalized-complexity prior
is transformed for log-precision to be conistent with the INLA internal representation. This
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distribution has more mass at large values of precision τ , and small values of standard deviation
σ = 1/

√
τ , for penalizing the unnecessary model complexity. For a given α and u, the parameter

λ is internally calculated by:

λ = − ln(α)
u

(7.3)

such that

P (σ > u) = α . (7.4)

For example, the prior distribution for the precision of cell-specific anelastic attenuation is defined

as:

p r i o r_omega_cap <- l i s t ( prec=l i s t ( p r i o r=’ pc . prec ’ , param=c (0 . 0 1 , 0 . 02 ) ) )

where P (ωca,p > 0.01) = 0.02.

Penalized-complexity joint prior:

For spatially varying coefficients, A Matérn kernel function with a joint penalized-complexity prior

for the range and scale is assigned to avoid overfitting. Model complexity is penalized by shrinking

the scale (σ) towards zero and pushing the range (ρ) towards infinity which implies very small
spatially varying effects (Fuglstad et al., 2019). Further information on the parameters of the

Matérn kernel functions is provided in Section 7.1.4. The joint penalized-complexity prior is given

by:

π(ρ, σ) =
d

2

(
Rρ−1−d/2 exp(−Rρ−d/2)

)
(S exp(−Sσ)) (7.5)

where R and S are the distribution parameters. Internally, R is defined by the probability (pρ)
that ρ is smaller than the value ρ0:

P (ρ < ρ0) = pρ (7.6)

and S is defined by the probability (pσ) that σ is greater than the value σ0:

P (σ > σ0) = pσ (7.7)

7.1.3 Specification of Random Effects

Random effects are specified in INLA with the f ( i , model , hyper ) function. The first argument
( i ) is an index vector that is used to assign the observations into groups, the second argument
(model) is the name of the model distribution, and the third optional argument (hyper) is for
defining the prior distribution for the parameters of the model. Additional information on the

options and arguments can be found with the ? f command. For GMM development, the random

effects can be modeled with model=” i i d ” which creates independent and identically distributed
random variables assigned to the observations based on the group vector. For example, the

between-event residuals (δB0
es) can be included in the model formula with:

p r i o r_tau_0 <- l i s t ( prec = l i s t ( p r i o r = ”loggamma” , param = c ( 4 . 0 , 0 . 5 ) ) )

form_i n l a <- . . . + f ( eq , model=” i i d ” , hyper=p r i o r_tau_0) + . . .

where eq is the column in data that contains the event IDs, and p r i o r_tau_0 is a list with the
prior distribution information for δB0

es. The . . . denote the other fixed and random effects of the

GMM functional form, which not important for this example, are omitted.
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Figure 7.1. SPDE mesh for spatially varying earthquake term

7.1.4 Specification of Spatially Varying Coefficients

A Gaussian random field (GRF) can be used to model the spatially varying effects, such as the

spatially varying earthquake constant, site constant, and VS30 scaling. In INLA, GRF are modeled
as stochastic partial differential equations (SPDE) and are solved using the finite element method.

For that, the first step in this approach is to create a 2D triangulated mesh of the region of study

using the function:

i n l a . mesh . 2 d( loc , max . edge , cu to f f , o f f s e t )

where l o c is a 2D array with the coordinates of interest, c u t o f f is the minimum allowed distance
between triangle vertices, o f f s e t is the extension distance in the inner and outer regions, and
max . edge is the maximum edge size for the inner and outer triangles. For example, the following

command creates the mesh shown in Figure 7.1 for the events in NGAWest 2.

#crea t e earthquake mesh
mesh_eq <- i n l a . mesh . 2 d( l o c=as . matrix (X_eq ) ,

max . edge = c (50 ,250) ,
c u t o f f = 3 , o f f s e t = c (50 , 150) )

#p l o t t i n g mesh
p l_eq_mesh <- ggp lot ( ) + theme_bw( ) + gg (mesh_eq ) +

geom_path ( data=map_ca , aes ( x=X, y=Y) , c o l o r=’ black ’ ) +
geom_path ( data=map_nv , aes ( x=X, y=Y) , c o l o r=’ black ’ ) +
geom_point ( data=X_eq , aes ( x=eqX , y=eqY) , c o l o r=se t1 [ 2 ] ) +
labs (x=”X (km) ” , y=”Y (km) ” )

p r i n t ( p l_eq_mesh )

The spatial correlation of the non-ergodic coefficients is modeled with the aid of a kernel

function. In INLA, the SPDE model for a Matérn kernel function (Equation 7.8) is created with

the i n l a . spde2 . pcmatern (mesh , alpha ) , where mesh is a triangulated mesh for the domain
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of the spatially varying coefficient, and alpha is a parameter controlling the smoothness of the
process (α). The spatial length scale and size of the kernel function are controlled by κ and σ,
respectively. Internaly, the correlation lenght is calculated as r =

√
2ν/κ.

κ(~t,~t′) =
σ2

2ν−1Γ(ν)
(κ||~t− ~t′||)ν K(κ||~t− ~t′||) (7.8)

The smoothness parameter ν of the Matérn kernel function is related to α through:

ν = α− d

2
(7.9)

where d is the dimension of the spatial domain.

Optional arguments of i n l a . spde2 . pcmatern ( ) include the definition of prior distributions
for the correlation length (r) and scale (σ), which are defined by joint penalized-complexity
prior to avoid overfitting. The prior distribution of the correlation length is defined as

p r i o r . range = c ( range_0, p_range_0) such that P (r < r0) = pr0 , and the prior distribution
for the sigma is defined as p r i o r . sigma = c ( sigma_0, p_sigma_0) such that P (σ > σ0) = pσ0 .

For example, the following code excerpt shows the construction of the kernel function for the

earthquake constant.

spde_eq <- i n l a . spde2 . pcmatern (mesh = mesh_eq , alpha = 2 ,
p r i o r . range = c (100 , 0 . 95 ) ,
p r i o r . sigma = c ( . 3 0 , 0 . 1 ) )

Once the kernel function is defined, the indices for the mesh nodes and the projection matrix

between themesh nodes and data coordinates can be generated. The index structure of themesh

nodes is obtained by i n l a . spde .make . index (name , spde$n . spde ) where name is the name of
the spatially varying effect, and spde$n . spde is the number of nodes. The projection matrix is
used to approximate the kernel function at the data location based on the kernel function at the

mesh modes. It is created by i n l a . spde .make .A(mesh , loc , weights=NULL) where mesh is
the INLA mesh for spatially varying effect of interest, and l o c are the coordinates of the data
points. The optional argument weights is used to model the non-ergodic coefficients with non-
constant covariance values, such as the geometrical spreading and VS30 coefficients whose effects
scale with fgs(Rrup,M) and fVS30

(VS30), respectively. The commands to generate indices and
projection matrix for the earthquake constant are:

A_eq <- i n l a . spde .make .A(mesh_eq , l o c = as . matrix (X_eq_a l l ) )
idx . eq <- i n l a . spde .make . index ( ” idx . eq” , spde_eq$n . spde )

The effects of the spatially varying coefficients are included in the regression model by adding

f ( idx , model ) in the model formula ( forumla) argument of i n l a ( ) . idx is the index structure
of the mesh, and model is the SPDE object of the spatially varying coefficient. As an example, the
next line of code shows how the spatially varying earthquake constant is included in the GMM

functional form:

form_i n l a <- . . . + f ( idx . eq , model = spde_eq ) + . . .

where idx . eq are the indices of the earthquakemesh and spde_eq is the SDPE for the earthquake
constant kernel function.
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The previous discussion covers the modeling of the spatially varying coefficients with zero mean.

That is typically sufficient for the earthquake and site constantswhere in the absence of data revert

to zero, implying ergodic scaling. However, when modeling the geometric spreading or the VS30
coefficient as a spatially varying term, a non-zeromean should be allowed. In INLA, this is achieved

by adding an extra fixed effect term in the regression formula to capture the average scaling. For

instance, the next piece of code shows the modeling of the VS30 constant as a spatially varying
term:

spde_sta_vs30 <- i n l a . spde2 . pcmatern (mesh = mesh , alpha = alpha ,
p r i o r . range = c (100 , 0 . 95 ) ,
p r i o r . sigma = c ( . 4 0 , 0 . 1 ) )

A_sta_vs30 <- i n l a . spde .make .A(mesh ,
l o c=as . matrix (X_sta_a l l ) , we ights=x_3)

idx . s ta_vs30 <- i n l a . spde .make . index ( ” idx . s ta_vs30 ” , spde_sta_vs30$n . spde )
form_i n l a <- . . . + x3 + f ( idx . s ta_vs30 , model = spde_sta_vs30 ) . . .

where spde_sta_vs30 is the SPDE for the spatially varying component of the VS30 coefficient,
A_sta_vs30 creates the projection matrix for the VS30 kernel function approximations at

the station locations, weights = x_3 specifies the scaling for the VS30 coefficient, x_3 is
the value of the VS30 scaling (fVS30

(VS30)) at the station locations, and idx . s ta_vs30 are

the indices of the VS30 SPDE mesh. The non-zero mean scaling is modeled by adding x3
in the functional form (form_i n l a ), and the spatially varying effect is modeled by adding
f ( idx . s ta_vs30 , model = spde_sta_vs30 ) .

7.1.5 Specification of Anelastic Attenuation

The effects of the cell-specific anelastic attenuation can be incorporated through the z latent
model. The z model is used to define random effects of the form Z u with Z being a design

matrix and u a vector of iid random variables with zero mean and τ precision. It is defined as
f ( id , model=’ z ’ , Z=Z) , where id is the group index vector, and Z is the design matrix. The
optional argument hyper is used to set the prior distributions for the mean and precision. In
the case of the cell-specific anelastic attenuation, u is the cell-specific anelastic adjustment to
the mean anelastic attenuation, andZ corresponds to theNgm byNcell cell-path-distance matrix

(Section 4.2). Ngm is the number of ground-motion observation, andNcell is the number of cells.

The mean effect of the anelastic attenuation is captured by adding R, the linear distance scaling,
in form_i n l a . The modeling of the cell-specific anelastic attenuation is shown below:

df_i n l a_covar $ idx_c e l l <- 1 : nrow ( df_i n l a_covar )

RC_spar s e <- as (RC , ”dgCMatrix” ) #spar s e matrix
p r i o r_prec_c e l l <- l i s t ( prec = l i s t ( p r i o r = ’ pc . prec ’ ,

param = c (0 . 0 1 , 0 . 01 ) ) )

form_i n l a <- . . . + R + f ( idx_c e l l , model = ”z” ,
Z = RC_sparse , hyper = p r i o r_prec_c e l l ) + . . .

idx_c e l l is the column name in the input data frame corresponding to the cell indices. It is
an integer vector ranging from 1 to Ngm but only the first Ncell elements are used. RC is the
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cell path distance matrix. Since the majority of the elements are equal to zero, it is transformed

to a compressed sparse form to reduce the matrix-vector multiplication computational cost. A

penalized prior distribution ( l i s t ( p r i o r = ’ pc . prec ’ , param = c (0 . 0 1 , 0 . 01 ) ) is used for
the precision of anelastic attenuation adjustments (P (ωca,p > 0.01) = 0.01); see Section 7.1.2 for
further information on the definition of the priors.

7.1.6 Organization of Input Data

The i n l a . s tack ( tag , data , e f f e c t s , A) function is used to organize all input data, including
indices, covariates for the fixed and random effects, and projection matrices for the spatially

varying terms.

• tag is a character string identifying the data

• data is a list that contains a vector with the observations

• e f f e c t s is a list with the data-frame of the covariates for the fixed effects and mesh
indices for the spatially varying terms

• A is a list with all the projection matrices provided in the same order as e f f e c t s

The example below shows the regression formula and the stack for the type-1 regression.

#cova r i a t e s
df_i n l a_covar <- data . frame ( i n t e r c e p t = 1 , eq = eq_id , s ta = sta_id )

#r e g r e s s i o n formula
form_i n l a_s p a t i a l <- y ∼ 0 + in t e r c e p t +

f ( eq , model=” i i d ” , hyper=p r i o r_tau_0) +
f ( sta , model=” i i d ” , hyper=p r i o r_omega_1bs ) +
f ( idx . eq , model = spde_eq ) +
f ( idx . sta , model = spde_sta )

#bu i ld s tack
stk_i n l a_s p a t i a l <- i n l a . s tack ( tag = ’model_i n l a_s p a t i a l ’ ,

data = l i s t ( y = y_data ) ,
e f f e c t s = l i s t ( df_i n l a_covar ,

idx . eq = idx . eq ,
idx . s ta = idx . s ta ) ,

A = l i s t (1 , A_eq , A_sta ) )

In the data list, y corresponds to the name of the prediction variable in the regression formula,
and y_data is a vector containing the total regression residuals (Section 3.1). In the e f f e c t s
list, the data-frame df_i n l a_covar contains the covariates for the fixed effects and the group
indices for the events and stations for the random effects. In this example, df_i n l a_covar has
three columns, i n t e r c e p t is a column of ones, that is the covariate for the regression intercept,
eq is a column with the event ids, ground-motions with the save event id correspond to the
same earthquake, and s ta is a column with the station ids, ground-motions with same station
id were recorded at the same station. idx . eq are the mesh node indices for the spatially varying
earthquake term, and idx . s ta are the mesh node indices for the spatially varying station term. It
should be noted that the column names in the covariates data frame and list names for the mesh
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Table 7.1. Available assessment criteria for c on t r o l . compute

Criterion Option

Marginal likelihood cpo
Conditional predictive ordinate cpo
Predictive integral transform p i t
Deviance information criterion d i c
Widely applicable Bayesian information criterion waic

node indicesmust be the same as the names of the coefficient and effects in form_i n l a_s p a t i a l .
The first element ofA is 1 as the fixed and random effects are already in the correct scale – scale

factor is unity. The second and third elements of A are the projection matrices for the spatially
varying earthquake and site terms which areA_eq andA_sta , respectively.

7.1.7 Inla Regression Function

The function i n l a ( ) is used to fit the model. The main input arguments are:

• formula : the functional of the regression model similar to lm ( ) . The prediction variable
is on the left-hand side of ∼, while the fixed and the random effects are defined on the

right hand side of∼

• data: the list data that will be used for fitting the model ( Section 7.1.6)

• f ami ly : the distribution family for the likelihood function. Implemented likelihoods
include ” gauss ian ”, ” po i s son ”, and ” binomial ”. The ” gauss ian ” likelihood is

typically used for GMMs

• c on t r o l . f ami ly : list of specifications for the prior distributions for the hyper-

parameters of the likelihood function (Section 7.1.2)

• c on t r o l . f i x e d : list of specifications for the prior distributions of the hyper-parameters
of the fixed terms in formula

• c on t r o l . p r ed i c t o r : list of specifications for computing variables such as the projection
matrices

• c on t r o l . compute: list of specifications for enabling various assessment criteria. Table 7.1
summarize the available assessment criteria.

• c on t r o l . i n l a : list of specifications used by INLA to approximate the posterior

distributions and hyper-parameters. The most commonly used options are: s t r a t e gy
which controls the approximation method and i n t . s t r a t e gy which controls the

integration method. Table 7.2 summarizes the available approximation options, and

Table 7.3 summarizes the available integration options.

As an example, the following piece of code is showing the model fit for the type-1 NGMM.

f i t_i n l a_s p a t i a l <- i n l a ( form_i n l a_spa t i a l ,
data = i n l a . s tack . data ( s tk_i n l a_s p a t i a l ) ,
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Table 7.2. Approximation options for s t r a t e gy

Approximation Method Option

Simplified Laplace Approximation, default s imp l i f i e d . l a p l a c e
Adaptive approximation adapt ive
Gaussian approximation gauss ian
Laplace approximation l a p l a c e

Table 7.3. Integration options for i n t . s t r a t e gy

Integration Method Option

Central composite design, default (Box and Draper, 2007) ccd
Numerical integration g r id
Empirical Bayes integration (Carlin and Louis, 2008) eb

fami ly = ” gauss ian ” ,
c on t r o l . f ami ly = l i s t ( hyper=l i s t ( prec=p r i o r_phi_0) ) ,
c on t r o l . f i x e d = pr i o r_f ixed ,
c on t r o l . p r ed i c t o r = l i s t (A=i n l a . s tack .A( stk_i n l a_s p a t i a l ) ) ,
c on t r o l . compute = l i s t ( d i c = TRUE, cpo = TRUE, waic = TRUE) ,
c on t r o l . i n l a = l i s t ( i n t . s t r a t e gy=’ eb ’ , s t r a t e gy=” gauss ian ” ) ,
verbose=TRUE, num. threads=n_threads )

form_i n l a_s p a t i a l is the regression functional from. The function i n l a . s tack . data ( ) extracts
the data from the INLA stack (defined in Section 7.1.6). A Gaussian distribution is assigned to the

likelihood function. For modeling the covariance in INLA, the between-event and within-event

residuals are modeled separately as opposed to Abrahamson and Youngs (1992) where they are

both included in the covariance of the likelihood function. Here, the between-event residual is

included in form_i n l a_s p a t i a l as a random effect that is grouped by the event id, and within-

event residual is modeled by the likelihood function as a Gaussian iid random variable with φ0

standard deviation. The c on t r o l . f ami ly defines the prior distribution for φ0 in terms of the

log precision. The prior distributions of the GMM fixed effects are defined in c on t r o l . f i x e d ;
p r i o r_f i x ed is a list with the GMMfixed effects prior distributions as defined in Section 7.1.2. The

function i n l a . s tack .A( ) extracts the projection matrices from the INLA stack. The list assigned

to c on t r o l . compute defines the various assessment criteria to be calculated; in this example, it
includes the Deviance information criterion, the Conditional predictive ordinate, and the widely

applicable Bayesian information criterion. The verbose option outputs the current state of the
optimization function as it progresses, and num. threads specifies the maximum number of CPU

threads to be utilized by INLA during the parallel processing steps.

7.2 R-INLA REGRESSION FOR NON-ERGODIC GMMS

Similar to the review of the STAN regression files in Chapter 6, the R-INLA regression code for the

type-1, type-2 and type 3 NGMMs are presented in Section 7.2.1), Section 7.2.2, and Section 7.2.3,
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respectively.

All INLA regression files are divided into three sections:

• pre-processing summarizes the input arguments for regression,

• regression defines the form of the problem, specifies the posterior distributions, and

performs the INLA regression; and

• post-processing extracts and saves the posterior distributions of the non-ergodic

coefficients and hyperparameters.

7.2.1 R-INLA regression function for Type-1 NGMM

The RunINLA function implemented in regression_inla_model1_unbounded_hyp .R located in
the ngmm_tools/Analyses /R_lib/ r e g r e s s i o n / i n l a subdirectory of the Github repository is
used to run the GP regression of the type-1 NGMM (Section 3.1).

Pre-processing:

The mandatory input arguments for RunINLA are as follows.

• df_ f l a t f i l e is the ground-motion regression data frame that contains the source

information (event ID and earthquake coordinates), site information (station ID and site

coordinates), and total regression residuals for every ground motion record. Details on

the structure of the ground-motion flatfile are provided in Section 4.1.

• out_fname defines the names of the output files.

• out_d i r specifies the location of the output directory.

The optional input arguments for RunINLA are as follows.

• r e s_name defines the column name in df_ f l a t f i l e for the total regression residuals,
the default column name is ’ t o t ’ .

• alpha controls the smoothness of the Matérn kernel function for the spatially varying
coefficients (Section 7.1.4), the default value is 2.

• mesh_edge_max sets the maximum length of the triangle sides composing the mesh for

the spatially varying coefficients. Themaximum edge length for the extension zone is five

times the maximum edge length of the inner zone. The default value is 15.

• mesh_inner_o f f s e t defines the extent of the inner zone around the events and stations.
The default value is 15.

• mesh_outer_o f f s e t defines the size of the extension zone around the inner zone. The
default value is 50.

• f l a g_gp_approx dictateswhether themore general Laplace approximation ( f l a g_gp_approx
=FALSE) or the computationally faster Gaussian approximation ( f l a g_gp_approx=TRUE)
is used. The default option isTRUE.
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• n_threads is the maximum number of CPU cores used in the parallel processing steps in

INLA. Consider reducing n_threads if INLA crashes due to an out-of-memory error. The
default option is the total number of CPU cores.

• run in l a_f l a g is the flag for running the INLA regression ( run in l a_f l a g=TRUE) or
loading andprocessing the rawoutput fromaprevious regression ( run in l a_f l a g=FALSE).
The default option isTRUE.

Listing 7.1 summarizes the source, site, and total residual information. n_data is the number of
the ground-motion data. data_eq_a l l contains the source information for all records; the first
column is the event id, the second column is the magnitude, and the third and fourth columns

are the hypo-center coordinates in UTM. eq_idx contains the row indices of data_eq_a l l
corresponding to unique event ids, and eq_inv contains the indices to reconstruct the original
array from the unique values. data_eq contains the unique rows of data_eq_a l l , constructed
based on eq_idx . X_eq includes the hypo-center UTM coordinates for all unique events, and

X_eq_a l l includes the hypo-center UTM coordinates for all records. n_eq is the number of
events.

Equivalently, data_sta_a l l contains the site information for all stations; the first column is the
station id, the second column is the VS30, and the third and fourth columns are the station UTM
coordinates. s ta_idx contains the row indices of data_sta_a l l corresponding to unique station
ids, and s ta_inv contains the indices to reconstruct the original array from the unique values.

data_sta contains the unique site information for all stations. X_sta holds the UTM coordinates

for all unique stations, andX_sta_a l l holds the station UTM coordinates for all records. n_sta is
the number of stations.

y_data contains the total ergodic residuals for all ground motions. utm_zone is the UTM zone

used for the transformation between UTM coordinates and Latitude and Longitude coordinates

for the events and stations, and utm_no is the UTM zone number.

# Preproces s Input Data
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
n_data <- nrow ( df_ f l a t f i l e )
#earthquake data
data_eq_a l l <- df_ f l a t f i l e [ , c ( ’ eq id ’ , ’mag ’ , ’ eqX ’ , ’ eqY ’ ) ]
out_unq <- UniqueIdxInv ( df_ f l a t f i l e [ , ’ eq id ’ ] )
eq_idx <- out_unq$ idx
eq_inv <- out_unq$ inv
data_eq <- data_eq_a l l [ eq_idx , ]
X_eq <- data_eq [ , c ( 3 , 4 ) ]
X_eq_a l l <- data_eq_a l l [ , c ( 3 , 4 ) ]
#c r ea t e earthquake i d s f o r a l l r e co rd s (1 to n_eq )
eq_id <- eq_inv
n_eq <- nrow ( data_eq )

#s t a t i o n data
data_sta_a l l <- df_ f l a t f i l e [ , c ( ’ s sn ’ , ’ Vs30 ’ , ’ staX ’ , ’ staY ’ ) ]
out_unq <- UniqueIdxInv ( df_ f l a t f i l e [ , ’ s sn ’ ] )
s ta_idx <- out_unq$ idx
s ta_inv <- out_unq$ inv
data_sta <- data_sta_a l l [ s ta_idx , ]
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X_sta <- data_sta [ , c ( 3 , 4 ) ]
X_sta_a l l <- data_sta_a l l [ , c ( 3 , 4 ) ]
#c r ea t e s t a t i o n i n d i c e s f o r a l l r e co rd s (1 to n_sta )
s ta_id <- s ta_inv
n_sta <- nrow ( data_sta )

#ground - motion obs e rva t i on s
y_data <- df_ f l a t f i l e [ , r e s_name ]

#UTM zone
utm_zone <- unique ( df_ f l a t f i l e $UTMzone)
utm_no <- as . numeric ( gsub ( ” ( [ 0 - 9 ]+) . *$” , ” \\1” , utm_zone ) )

Listing 7.1. Preprocessing section of type-1 NGMM INLA regression file.

Regression:

The regression section includes the definition of the prior distributions for the fixed effects

(Listing 7.2), the development of the mesh and definition of the kernel functions for the spatially

varying coefficients (Listing 7.3), the definition of the prior distributions for the aleatory terms

(Listing 7.4), the formulation of the NGMM functional form (Listing 7.5), and the INLA regression

(Listing 7.6).

In Listing 7.2, p r i o r_f i x ed specifies the prior distributions for all fixed effects. In particular, it
assigns a normal prior distribution to the model intercept ( i n t cp ) with a zero mean and 0.2
variance (5 precision). df_i n l a_covar contains all the group indices and coefficient covariates
used in the regression model; i n t r cp is the intercept covariate which is a vector of ones, eq
contains the event ids for all ground motions, and s ta contains the station ids for all ground
motions.

# Run INLA, f i t model
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#f i x ed e f f e c t s
#- - - - - - - - - - - - - - - - - -
#p r i o r on the f i x ed e f f e c t s
p r i o r_f i x ed <- l i s t (mean . i n t e r c e p t = 0 , prec . i n t e r c e p t = 5 ,

mean = ( l i s t ( in tcp =0.0 , d e f au l t =0) ) ,
prec = ( l i s t ( in tcp =5.0 , d e f au l t =0.01) ) )

#cova r i a t e s
df_i n l a_covar <- data . frame ( in tcp = 1 , eq = eq_id , s ta = sta_id )

Listing 7.2. Regression Section of type-1 NGMM INLA regression file. Definition of fixed-effects.

Next, Listing 7.3 develops the mesh for the spatially varying event and station terms, defines

the kernel functions for these terms, and sets prior distributions for the hyper-parameters of

the kernel functions. i n l a . mesh . 2 d ( ) creates a mesh, which encompasses all events and
stations (X_eq and X_sta ), and stores it in mesh. The SPDE for the δc1,E kernel function is

stored in spde_eq. The correlation length (`1,E) and scale (ω1,E) are assigned a joint penalized-

complexity prior distribution such that there is a 95% probability that the correlation length

of δc1,E will be less than 100 km (P (`1,E < 100) = 0.95) and 10% probability that the scale

of δc1,E will be greater than 0.3 (P (ω1,E > 0.3) = 0.1). Similarly, the SPDE for the δc1a,S

81



kernel function is defined in spde_sta . The correlation length (`1a,S) and scale (ω1a,S) are

assigned a joint penalized-complexity prior distribution with P (`1a,S < 100) = 0.95 and
P (ω1a,S > 0.4) = 0.1. i n l a . spde .make .A(mesh , l o c = as . matrix (X_eq_a l l ) ) generates
and stores in A_eq the projection matrix for δc1,E for the event locations of all ground motions,
and i n l a . spde .make . index ( ” idx . eq” , spde_eq$n . spde ) generates and stores in idx . eq the
indices of the mesh for the SPDE for the δc1,E kernel function. Correspondingly,A_sta holds the
projection matrix for δc1a,S for all stations, and idx . s ta holds the indices of the mesh for the
SPDE for the δc1a,S kernel function.

The spatially independent site term (δ1b,S) is modeled with a normal distribution with zero mean
and ω1b,S standard deviation. The prior of ω1b,S is parameterized through the log-precision

(log(1/ω2
1b,S)) which is assigned a log-gamma distribution with a 0.8 shape and 0.5 rate parameter

in p r i o r_omega_1bs.

#sp a t i a l model
#- - - - - - - - - - - - - - - - - -
#input arguments
edge_max <- mesh_edge_max
inner_o f f s e t <- mesh_inner_o f f s e t
outer_o f f s e t <- mesh_outer_o f f s e t

#domain mesh
mesh <- i n l a . mesh . 2 d( l o c=rbind ( as . matrix (X_eq ) , as . matrix (X_sta ) ) ,

max . edge = c (1 , 5 ) * edge_max ,
c u t o f f = 3 , o f f s e t = c ( inner_o f f s e t , outer_o f f s e t ) )

#p r i o r d i s t r i b u t i o n s
#spde earthquake p r i o r
spde_eq <- i n l a . spde2 . pcmatern (mesh = mesh , alpha = alpha ,

p r i o r . range = c (100 , 0 . 95 ) ,
p r i o r . sigma = c ( . 3 0 , 0 . 1 ) )

#spde s t a t i o n p r i o r
spde_sta <- i n l a . spde2 . pcmatern (mesh = mesh , alpha = alpha ,

p r i o r . range = c (100 , 0 . 95 ) ,
p r i o r . sigma = c ( . 4 0 , 0 . 1 ) )

A_eq <- i n l a . spde .make .A(mesh , l o c = as . matrix (X_eq_a l l ) )
idx . eq <- i n l a . spde .make . index ( ” idx . eq” , spde_eq$n . spde )
A_sta <- i n l a . spde .make .A(mesh , l o c = as . matrix (X_sta_a l l ) )
idx . s ta <- i n l a . spde .make . index ( ” idx . s ta ” , spde_sta $n . spde )

#s i t e independent term
pr i o r_omega_1bs <- l i s t ( prec = l i s t ( p r i o r = ”loggamma” ,

param = c ( 0 . 8 , 0 . 5 ) ) )
Listing 7.3. Regression section of type-1 NGMM INLA regression file. Definition of spatially varying

terms.

In Listing 7.4 the standard deviation of thewithin-event residuals (φ0) is parameterized through the

log-precision (log(1/φ2
0)) and is assigned a log-gamma distribution with a 5.0 shape and 0.5 rate

parameter in p r i o r_phi_0. Similarly, the log-precision of the between-event residual (log(1/τ 20 ))
is assigned a log-gamma distribution with a 4.0 shape and 0.5 rate parameter in p r i o r_tau_0.
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#al ea t o ry terms
#- - - - - - - - - - - - - - - - - -
#p r i o r d i s t r i b u t i o n s
p r i o r_phi_0 <- l i s t ( prec = l i s t ( p r i o r = ”loggamma” , param = c ( 5 . 0 , 0 . 5 ) ) )
p r i o r_tau_0 <- l i s t ( prec = l i s t ( p r i o r = ”loggamma” , param = c ( 4 . 0 , 0 . 5 ) ) )
Listing 7.4. Regression section of type-1 NGMM INLA regression. Definition of aleatory prior

distributions.

The form_i n l a_s p a t i a l spells out functional form for the mean for the type-1 NGMM

regression. That is, the expected value of the regression residual (y) is equal to the sum of the

intercept ( i n t cp ), spatially varying earthquake term ( f ( idx . eq , model = spde_eq )), spatially
varying site term ( f ( idx . sta , model = spde_sta )), spatially independent site term ( f ( sta ,
model=” i i d ” , hyper=p r i o r_omega_1bs )), and between-event residual ( f ( eq , model=” i i d ” ,
hyper=p r i o r_tau_0)). As mentioned in Section 7.1.7, it is for modeling convenience that the
between-event residual is included in themean function and the within-event residual is modeled

in the standard deviation of the likelihood function.

The spatially varying coefficients are defined based on their mesh indices and the SPDE of their

kernel function. For example, the spatially varying earthquake term is defined by the event mesh

indices idx . ed and the SPDE for the δ1,E kernel function spde_eq. Similarly, the random effects,

such as δ1b,S and δB, are specified based on the column name in df_i n l a_covar (Listing 7.2) for
their group indices and the i i d designation for the model argument. The hyper argument sets
the prior distribution which is specified in Listing 7.3 for δc1b,S and in Listing 7.4 for δB.

The s tk_i n l a_s p a t i a l encapsulates all data used in INLA regression. The data argument
specifies the name of regression residuals. The name of the list argument should correspond to

the name of the prediction variable in form_i n l a_s p a t i a l . The argument A is given a list with
the projection matrices for the spatially varying earthquake and site constants and the unit scale

for the random effects. The argument e f f e c t s includes the mesh indices for the spatially varying
terms and group indices for the random effects in the same order specified inA.

#in l a model
#- - - - - - - - - - - - - - - - - -
#fun c t i o n a l form ( with s p a t i a l var )
form_i n l a_s p a t i a l <- y ∼ 0 + intcp +

f ( idx . eq , model = spde_eq ) +
f ( idx . sta , model = spde_sta ) +
f ( sta , model=” i i d ” , hyper=p r i o r_omega_1bs ) +
f ( eq , model=” i i d ” , hyper=p r i o r_tau_0)

#bu i ld s tack
stk_i n l a_s p a t i a l <- i n l a . s tack ( data = l i s t ( y = y_data ) ,

A = l i s t (A_eq , A_sta , 1) ,
e f f e c t s = l i s t ( idx . eq = idx . eq ,

idx . s ta = idx . sta ,
df_i n l a_covar ) ,

tag = ’model_i n l a_s p a t i a l ’ )

Listing 7.5. Regression section of type-1 NGMM INLA regression file. Functional form formulation.
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The INLA regression is summarized in Listing 7.6. If f l a g_gp_approx is TRUE the empirical
Bayes approach and the Gaussian approximation is used in the regression ( c on t r o l . i n l a =
l i s t ( i n t . s t r a t e gy=’ eb ’ , s t r a t e gy=” gauss ian ” )); while if f l a g_gp_approx is FALSE
the full Laplace approximation is used instead. The distribution family of the within-event

residuals is specified in f ami ly=” gauss ian ”, and the prior distribution for the precision

of δW is given in c on t r o l . f ami ly = l i s t ( hyper = l i s t ( prec = p r i o r_phi_0) ) . The

regression data are specified in data = i n l a . s tack . data ( s tk_i n l a_s p a t i a l ) . The

c on t r o l . f i x e d = pr i o r_f i x ed assigns the prior distribution for the fixed effects, which, for
NGMM-type1, corresponds to the intercept of the model. The projection matrices are passed to

the regression through the c on t r o l . p r ed i c t o r = l i s t (A = i n l a . s tack .A( stk_i n l a_s p a t i a l ) )
argument. Once the regression is complete, the regressionmodel is saved in the output directory.

If run in l a_f l a g is TRUE, the INLA regression is performed as described in the preceding

paragraph, while if run in l a_f l a g is FALSE, a previous regression model saved in the output
directory is loaded. The second option is useful when new post-processing steps are added

because it avoids the computational cost associated with fitting the regression model.

#f i t i n l a model
#- - - - - - - - - - - - - - - - - -
i f ( run in l a_f l a g ) {
#run model ( s p a t i a l )
i f ( f l a g_gp_approx == TRUE){

f i t_i n l a_s p a t i a l <- i n l a ( form_i n l a_spa t i a l ,
data = i n l a . s tack . data ( s tk_i n l a_s p a t i a l ) ,
f ami ly = ” gauss ian ” ,
c on t r o l . f ami ly =

l i s t ( hyper = l i s t ( prec = p r i o r_phi_0) ) ,
c on t r o l . f i x e d = pr i o r_f ixed ,
c on t r o l . p r ed i c t o r =

l i s t (A = i n l a . s tack .A( stk_i n l a_s p a t i a l ) ) ,
c on t r o l . compute = l i s t ( d i c = TRUE,

cpo = TRUE,
waic = TRUE) ,

c on t r o l . i n l a = l i s t ( i n t . s t r a t e gy=’ eb ’ ,
s t r a t e gy=” gauss ian ” ) ,

verbose=TRUE, num. threads=n_threads )
} e l s e {

f i t_i n l a_s p a t i a l <- i n l a ( form_i n l a_spa t i a l ,
data = i n l a . s tack . data ( s tk_i n l a_s p a t i a l ) ,
f ami ly = ” gauss ian ” ,
c on t r o l . f ami ly =

l i s t ( hyper = l i s t ( prec = p r i o r_phi_0) ) ,
c on t r o l . f i x e d = pr i o r_f ixed ,
c on t r o l . p r ed i c t o r =

l i s t (A = i n l a . s tack .A( stk_i n l a_s p a t i a l ) ) ,
c on t r o l . compute = l i s t ( d i c = TRUE,

cpo = TRUE,
waic = TRUE) ,

verbose=TRUE, num. threads=n_threads )
}
#save r e s u l t s
d i r . c r e a t e ( out_dir , showWarnings=FALSE, r e c u r s i v e=TRUE)
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save ( f i t_i n l a_spa t i a l ,
f i l e=f i l e . path ( out_dir , paste0 ( out_fname , ’_i n l a_f i t ’ , ’ . Rdata ’ ) ) )

} e l s e {
#load r e s u l t s
load ( f i l e . path ( out_dir , paste0 ( out_fname , ’_i n l a_f i t ’ , ’ . Rdata ’ ) ) )

}

Listing 7.6. Regression section of type-1 NGMM INLA regression file. Model Fit.

Post-processing:

The post-processing section summarizes in tables and plots the hyper-parameters’ posterior

distributions, the non-ergodic coefficients, and the non-ergodic residuals.

Listing 7.7 summarizes in hyp_param the main percentiles (2.5th, 50th, 97.5th percentile), and
the mean and standard deviation of the NGMM hyper-parameters. The ω1b,S , φ0, and τ0, which
internally are represented by the precision, are transformed into standard-deviation units.

## Post - p r o c e s s i ng Resu l t s
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#hyper - parameters
hyp_param <- data . frame ( matrix ( nco l = 6 , nrow = 0) )
colnames (hyp_param) <- colnames ( f i t_i n l a_s p a t i a l $summary . hyperpar )

hyp_param [ ’ dc_0 ’ , ] <- f i t_i n l a_s p a t i a l $summary . f i x ed [ ’ in t cp ’ , ]
#c o r r e l a t i o n l eng th s o f s p a t i a l terms
hyp_param [ ’ e l l _1e ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’Range f o r idx . eq ’ , ]
hyp_param [ ’ e l l _1as ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’Range f o r idx . s ta ’ , ]
#standard dev i a t i on s o f s p a t i a l terms
hyp_param [ ’ omega_1e ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ Stdev f o r idx . eq ’ , ]
hyp_param [ ’ omega_1as ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ Stdev f o r idx . s ta ’ , ]
hyp_param [ ’ omega_1bs ’ , ] <- 1/ sq r t ( f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ P r e c i s i on f o r s ta ’ , ] )
#a l e a t o ry terms
hyp_param [ ’ phi_0 ’ , ] <- 1/ sq r t ( f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ P r e c i s i on f o r the Gaussian obs e rva t i on s ’ , ] )
hyp_param [ ’ tau_0 ’ , ] <- 1/ sq r t ( f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ P r e c i s i on f o r eq ’ , ] )
#unava i l ab l e sd f o r transformed va r i a b l e s
hyp_param [ c ( ’ omega_1bs ’ , ’ phi_0 ’ , ’ tau_0 ’ ) , ’ sd ’ ] <- NA
Listing 7.7. Post-processing section of type-1 NGMM INLA regression file. Hyper-parameter

summary.

Listing 7.8 includes the calculation of the mean and standard deviation of the non-ergodic

coefficients, and the total, within-event, and between-event non-ergodic residuals.

The posterior distributions of the spatially varying terms are contained in the summary . random
field of f i t_i n l a_s p a t i a l . For example, δ~c1,E is extracted at the mesh nodes with

c o e f f_1e <- f i t_i n l a_s p a t i a l $summary . random$ idx . eq where idx . eq is the mesh
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index name used for δc1,E . c o e f f_1e$mean contains the posterior mean values of δ~c1,E
while c o e f f_1e$ sd contains the posterior standard deviation of δ~c1,E . The projection

matrix from the mesh nodes to the event locations is created with p r j c t_gr id_eq <-
i n l a . mesh . p r o j e c t o r (mesh , l o c = as . matrix (X_eq ) ) ; the l o c argument specifies the

target location which in this case is event coordinates (X_eq). The mean and epistemic

uncertainty of δ~c1,E (µ(δ~c1,E) and ψ(δ~c1,E)) is estimated at the event locations in the

c o e f f_1e_mu <- i n l a . mesh . p r o j e c t ( p r j c t_gr id_eq , c o e f f_1e$mean) and c o e f f_1e_s i g
<- i n l a . mesh . p r o j e c t ( p r j c t_gr id_eq , c o e f f_1e$ sd ) lines, respectively. The same process
is used for the calculation ofµ(δ~c1a,S) andψ(δ~c1a,S) stored in c o e f f_1as_muand c o e f f_1as_s i g .

The posterior distribution of δc1b,S is obtained from the INLA model in c o e f f_1bs <-
f i t_i n l a_s p a t i a l $summary . random$ sta , where s ta is the name of the random effect in

form_i n l a_s p a t i a l used for modeling δ~c1b,S . Since δc1b,S is modeled as a random effect

group by the station indices, no interpolation is required. The mean and epistemic uncertainty

of δ~c1b,S (µ(δ~c1b,S) and ψ(δ~c1b,S)) is obtained in lines c o e f f_1bs_mu <- c o e f f_1bs$mean
c o e f f_1bs_s i g <- c o e f f_1bs$ sd.

The mean adjustment of the NGMM from the ergodic base model is computed in y_new_mu. That
is the part of the total ergodic residuals treated as a systematic effect in NGMM. y_new_mu is equal
to the sum of the mean values of δc0, δ~c1a,S and δ~c1b,S .

The total non-ergodic residuals ( r e s_tot_mu) are calculated by subtracting the NGMM mean

adjustment from the total ergodic residuals. The between-event non-ergodic residuals are

obtained directly form the INLA model as they were modeled as random effect grouped by the

event id ( f i t_i n l a_s p a t i a l $summary . random$eq$mean [ eq_inv ] ), eq is the name of the δB
random term in form_i n l a_s p a t i a l . The within-event non-ergodic residuals are computed by
subtracting the between-event residuals from the total non-ergodic residuals.

The df_c o e f f dataframe summarizes all information about the non-ergodic coefficients

described in the previous paragraphs. The df_pr ed i c t_summary summarizes the mean

non-ergodic adjustment and non-ergodic residuals.

## Summarize c o e f f i c i e n t s and r e s i d u a l s
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#p r o j e c t i o n s
p r j c t_gr id_eq <- i n l a . mesh . p r o j e c t o r (mesh , l o c = as . matrix (X_eq ) )
p r j c t_gr id_sta <- i n l a . mesh . p r o j e c t o r (mesh , l o c = as . matrix (X_sta ) )

#c o e f f i c i e n t s
c o e f f_1e <- f i t_i n l a_s p a t i a l $summary . random$ idx . eq
c o e f f_1as <- f i t_i n l a_s p a t i a l $summary . random$ idx . s ta
c o e f f_1bs <- f i t_i n l a_s p a t i a l $summary . random$ sta
#c o e f f mean and std
c o e f f_1e_mu <- i n l a . mesh . p r o j e c t ( p r j c t_gr id_eq , c o e f f_1e$mean)
c o e f f_1e_s i g <- i n l a . mesh . p r o j e c t ( p r j c t_gr id_eq , c o e f f_1e$ sd )
c o e f f_1as_mu <- i n l a . mesh . p r o j e c t ( p r j c t_gr id_sta , c o e f f_1as $mean)
c o e f f_1as_s i g <- i n l a . mesh . p r o j e c t ( p r j c t_gr id_sta , c o e f f_1as $ sd )
c o e f f_1bs_mu <- c o e f f_1bs$mean
c o e f f_1bs_s i g <- c o e f f_1bs$ sd

#mean p r ed i c t i on
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y_new_mu <- hyp_param [ ’ dc_0 ’ , ’mean ’ ] + c o e f f_1e_mu[ eq_inv ] +
c o e f f_1as_mu[ s ta_inv ] + c o e f f_1bs_mu[ s ta_inv ]

#r e s i d u a l s
r e s_tot_mu <- y_data - y_new_mu
re s_dB_mu <- f i t_i n l a_s p a t i a l $summary . random$eq$mean [ eq_inv ]
r e s_dWS_mu <- r e s_tot_mu - r e s_dB_mu

#summary dataframes
df_f l a t i n f o <- df_ f l a t f i l e [ , c ( ’ r sn ’ , ’ eq id ’ , ’ s sn ’ , ’ eqLat ’ , ’ eqLon ’ ,

’ s taLat ’ , ’ staLon ’ , ’ eqX ’ , ’ eqY ’ , ’ staX ’ , ’ staY ’ ) ]

#summary c o e f f i c i e n t s
df_c o e f f <- data . frame ( rsn=df_f l a t i n f o $ rsn ,

dc_0_mean=hyp_param [ ’ dc_0 ’ , ’mean ’ ] ,
dc_1e_mean=c o e f f_1e_mu[ eq_inv ] ,
dc_1as_mean=c o e f f_1as_mu[ s ta_inv ] ,
dc_1bs_mean=c o e f f_1bs_mu[ s ta_inv ] ,
dc_0_s i g=hyp_param [ ’ dc_0 ’ , ’ sd ’ ] ,
dc_1e_s i g=c o e f f_1e_s i g [ eq_inv ] ,
dc_1as_s i g=c o e f f_1as_s i g [ s ta_inv ] ,
dc_1bs_s i g=c o e f f_1bs_s i g [ s ta_inv ] )

df_c o e f f <- merge ( df_f l a t i n f o , df_co e f f , by=c ( ’ rsn ’ ) )

#summary p r ed i c t i o n s and r e s i d u a l s
df_pr ed i c t_summary <- data . frame ( rsn=df_f l a t i n f o $ rsn , nerg_mu=y_new_mu,

r e s_tot=r e s_tot_mu, r e s_between=re s_dB_mu,
r e s_with in=re s_dWS_mu)

df_pr ed i c t_summary <- merge ( df_f l a t i n f o , df_pr ed i c t_summary , by=c ( ’ rsn ’ ) )
Listing 7.8. Post-processing section of type-1 NGMM INLA regression file. Summary of non-ergodic

coefficients and residuals.

The code in Listing 7.9 computes the probability density function (PDF) and cumulative density

function (CDF) of the marginal posterior distributions of all the hyper-parameters. This step

involves first the transformation of the posterior distributions from the internal scale to the

linear scale of each hyper-parameter and then the interpolation of the marginal posterior

over a regular quantile interval. All marginal distributions, in the internal scale, are stored in

f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar .

The calculation of the posterior distribution for the standard deviation of δW 0 (.i.eφ0) is presented

as a representative example, but the same procedure applies to all the other hyper-parameters.

Internally, the posterior distribution is calculated for the log-precision of δW 0, which is stored in

f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar [ [ ’ Log p r e c i s i o n f o r the Gaussian
obs e rva t i on s ’ ] ] . The i n l a . tmarg ina l ( fun , marginal ) function is used to transform a

marginal posterior distribution from the internal to the desired scale. The fun argument defines
the transformation function, which for the log-precision to standard deviation transformation

is: f unc t i on (x ) exp ( - x/2) . The PDF for the marginal posterior distribution of φ0 is stored in

post_phi_0. The t rapz ( post_phi_0$x , post_phi_0$y ) normalization ensures that the area
under the PDF is unity. The CDF for the φ0 posterior distribution is stored in the y_in t field of
post_phi_0. Lastly, the posterior of φ0 is evaluated over a regular quantile interval so that it can
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be summarized together with the other posterior distributions in the hyp_po s t e r i o r data frame.

## Pos t e r i o r d i s t r i b u t i o n s
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#i n t e r c e p t
post_dc_0 <- as . data . frame ( f i t_i n l a_s p a t i a l $marg ina l s . f i x e d $ in tcp )
#a l e a t o ry parameters
post_phi_0 <- as . data . frame ( i n l a . tmarg ina l ( func t i on (x ) exp ( - x/2) ,

f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar
[ [ ’ Log p r e c i s i o n f o r the Gaussian obs e rva t i on s ’ ] ] ) )

post_tau_0 <- as . data . frame ( i n l a . tmarg ina l ( func t i on (x ) exp ( - x/2) ,
f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar

[ [ ’ Log p r e c i s i o n f o r eq ’ ] ] ) )
#non - e rgod i c s c a l e s
post_omega_1e <- as . data . frame ( i n l a . tmarg ina l ( func t i on (x ) exp ( x ) ,

f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar
[ [ ’ l og ( Stdev ) f o r idx . eq ’ ] ] ) )

post_omega_1as <- as . data . frame ( i n l a . tmarg ina l ( func t i on (x ) exp ( x ) ,
f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar

[ [ ’ l og ( Stdev ) f o r idx . s ta ’ ] ] ) )
post_omega_1bs <- as . data . frame ( i n l a . tmarg ina l ( func t i on (x ) exp ( - x/2) ,

f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar
[ [ ’ Log p r e c i s i o n f o r s ta ’ ] ] ) )

#c o r r e l a t i o n l ength
post_e l l _1e <- as . data . frame ( i n l a . tmarg ina l ( func t i on (x ) exp ( x ) ,

f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar
[ [ ’ l og (Range ) f o r idx . eq ’ ] ] ) )

post_e l l _1as <- as . data . frame ( i n l a . tmarg ina l ( func t i on (x ) exp ( x ) ,
f i t_i n l a_s p a t i a l $ i n t e r n a l . marg ina ls . hyperpar

[ [ ’ l og (Range ) f o r idx . s ta ’ ] ] ) )

#norma l i za t i on
post_dc_0$y <- post_dc_0$y / trapz ( post_dc_0$x , post_dc_0$y )
post_phi_0$y <- post_phi_0$y / trapz ( post_phi_0$x , post_phi_0$y )
post_tau_0$y <- post_tau_0$y / trapz ( post_tau_0$x , post_tau_0$y )
post_omega_1e$y <- post_omega_1e$y / trapz ( post_omega_1e$x ,

post_omega_1e$y )
post_omega_1as $y <- post_omega_1as $y / trapz ( post_omega_1as $x ,

post_omega_1as $y )
post_omega_1bs$y <- post_omega_1bs$y / trapz ( post_omega_1bs$x ,

post_omega_1bs$y )
post_e l l _1e$y <- post_e l l _1e$y / trapz ( post_e l l _1e$x , post_e l l _1e$y )
post_e l l _1as $y <- post_e l l _1as $y / trapz ( post_e l l _1as $x , post_e l l _1as $y )

#compute p o s t e r i o r cd f s
post_dc_0$y_in t <- cumtrapz ( post_dc_0$x , post_dc_0$y )
post_phi_0$y_in t <- cumtrapz ( post_phi_0$x , post_phi_0$y )
post_tau_0$y_in t <- cumtrapz ( post_tau_0$x , post_tau_0$y )
post_omega_1e$y_in t <- cumtrapz ( post_omega_1e$x , post_omega_1e$y )
post_omega_1as $y_in t <- cumtrapz ( post_omega_1as $x , post_omega_1as $y )
post_omega_1bs$y_in t <- cumtrapz ( post_omega_1bs$x , post_omega_1bs$y )
post_e l l _1e$y_in t <- cumtrapz ( post_e l l _1e$x , post_e l l _1e$y )
post_e l l _1as $y_in t <- cumtrapz ( post_e l l _1as $x , post_e l l _1as $y )
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#po s t e r i o r d i s t r i b u t i o n s
#de f i n e quan t i l e s
hyp_po s t e r i o r <- data . frame ( quant=seq ( 0 . 0 , 1 . 0 , 0 . 0 1 ) )
#compute pdf and cdf
i f ( ! a l l ( i s . na ( post_dc_0$y_in t ) ) ) {

hyp_po s t e r i o r $dc_0 <- approx ( post_dc_0$y_int , post_dc_0$x ,
hyp_po s t e r i o r $quant ) $y

hyp_po s t e r i o r $dc_0_pdf <- approx ( post_dc_0$y_int , post_dc_0$y ,
hyp_po s t e r i o r $quant ) $y

} e l s e {
hyp_po s t e r i o r $dc_0 <- NaN
hyp_po s t e r i o r $dc_0_pdf <- NaN

}
i f ( ! a l l ( i s . na ( post_e l l _1e$y_in t ) ) ) {

hyp_po s t e r i o r $ e l l _1e <- approx ( post_e l l _1e$y_int , post_e l l _1e$x ,
hyp_po s t e r i o r $quant ) $y

hyp_po s t e r i o r $ e l l _1e_pdf <- approx ( post_e l l _1e$y_int , post_e l l _1e$y ,
hyp_po s t e r i o r $quant ) $y

} e l s e {
hyp_po s t e r i o r $ e l l _1e <- NaN
hyp_po s t e r i o r $ e l l _1e_pdf <- NaN

}
i f ( ! a l l ( i s . na ( post_e l l _1as $y_in t ) ) ) {

hyp_po s t e r i o r $ e l l _1as <- approx ( post_e l l _1as $y_int , post_e l l _1as $x ,
hyp_po s t e r i o r $quant ) $y

hyp_po s t e r i o r $ e l l _1as_pdf <- approx ( post_e l l _1as $y_int , post_e l l _1as $y ,
hyp_po s t e r i o r $quant ) $y

} e l s e {
hyp_po s t e r i o r $ e l l _1as <- NaN
hyp_po s t e r i o r $ e l l _1as_pdf <- NaN

}
i f ( ! a l l ( i s . na ( post_omega_1e$y_in t ) ) ) {

hyp_po s t e r i o r $omega_1e <- approx ( post_omega_1e$y_int , post_omega_1e$x ,
hyp_po s t e r i o r $quant ) $y

hyp_po s t e r i o r $omega_1e_pdf <- approx ( post_omega_1e$y_int , post_omega_1e$y ,
hyp_po s t e r i o r $quant ) $y

} e l s e {
hyp_po s t e r i o r $omega_1e <- NaN
hyp_po s t e r i o r $omega_1e_pdf <- NaN

}
i f ( ! a l l ( i s . na ( post_omega_1as $y_in t ) ) ) {

hyp_po s t e r i o r $omega_1as <- approx ( post_omega_1as $y_int ,
post_omega_1as $x , hyp_po s t e r i o r $quant ) $y

hyp_po s t e r i o r $omega_1as_pdf <- approx ( post_omega_1as $y_int ,
post_omega_1as $y , hyp_po s t e r i o r $quant ) $y

} e l s e {
hyp_po s t e r i o r $omega_1as <- NaN
hyp_po s t e r i o r $omega_1as_pdf <- NaN

}
i f ( ! a l l ( i s . na ( post_omega_1bs$y_in t ) ) ) {

hyp_po s t e r i o r $omega_1bs <- approx ( post_omega_1bs$y_int ,
post_omega_1bs$x , hyp_po s t e r i o r $quant ) $y

hyp_po s t e r i o r $omega_1bs_pdf <- approx ( post_omega_1bs$y_int ,
post_omega_1bs$y , hyp_po s t e r i o r $quant ) $y
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} e l s e {
hyp_po s t e r i o r $omega_1bs <- NaN
hyp_po s t e r i o r $omega_1bs_pdf <- NaN

}
i f ( ! a l l ( i s . na ( post_phi_0$y_in t ) ) ) {

hyp_po s t e r i o r $ phi_0 <- approx ( post_phi_0$y_int , post_phi_0$x ,
hyp_po s t e r i o r $quant ) $y

hyp_po s t e r i o r $ phi_0_pdf <- approx ( post_phi_0$y_int , post_phi_0$y ,
hyp_po s t e r i o r $quant ) $y

} e l s e {
hyp_po s t e r i o r $ phi_0 <- NaN
hyp_po s t e r i o r $ phi_0_pdf <- NaN

}
i f ( ! a l l ( i s . na ( post_tau_0$y_in t ) ) ) {

hyp_po s t e r i o r $ tau_0 <- approx ( post_tau_0$y_int , post_tau_0$x ,
hyp_po s t e r i o r $quant ) $y

hyp_po s t e r i o r $ tau_0_pdf <- approx ( post_tau_0$y_int , post_tau_0$y ,
hyp_po s t e r i o r $quant ) $y

} e l s e {
hyp_po s t e r i o r $ tau_0 <- NaN
hyp_po s t e r i o r $ tau_0_pdf <- NaN

}
Listing 7.9. Post-processing section of type-1 NGMM INLA regression file. Full Posterior

distributions of hyper-parameter.

The code in Listing 7.10 produces the figures showing the spatial distribution of the SPDEmesh, the

mean values, epistemic uncertainty of the spatially varying terms, and the posterior distributions

of the hyper-parameters. In particular:

• pl_mesh produces the figure for the mesh of the spatially varying coefficients.

• pl_dc_1e_mu_map produces the figure for the spatial variability of the mean values of
δ~c1,E .

• pl_dc_1e_sd_map produces the figure for the spatial variability of the epistemic

uncertainty of δ~c1,E .

• pl_dc_1as_mu_map produces the figure for the spatial variability of the mean values of
δ~c1a,S .

• pl_dc_1as_sd_map produces the figure for the spatial variability of the epistemic
uncertainty of δ~c1a,S .

• pl_dc_0_post creates the figure with the posterior distribution of δc0.

• pl_omega_1e_post creates the figure of the posterior distribution of ω1,E .

• pl_omega_1as_post creates the figure of the posterior distribution of ω1a,S .

• pl_omega_1bs_post creates the figure of the posterior distribution of ω1b,S .

• pl_e l l _1e_post creates the figure of the posterior distribution of `1,E .

• pl_e l l _1as_post creates the figure of the posterior distribution of `1a,S .

# Plo t t i ng
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# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#p l o t t i n g i n f o
s e t1 <- RColorBrewer : : brewer . pa l (7 , ” Set1 ” ) #co l o r map
#Ca l i f o r n i a
map_ca <- subset ( map_data ( ” s t a t e ” ) , r eg i on %in% c ( ” c a l i f o r n i a ” ) )
map_ca_utm <- LongLatToUTM( l a t=map_ca$ la t , lon=map_ca$ long , utm_no )
map_ca [ , c ( ’X ’ , ’Y ’ ) ] <- map_ca_utm [ , c ( ’X ’ , ’Y ’ ) ]/1000
#Nevada
map_nv <- subset ( map_data ( ” s t a t e ” ) , r eg i on %in% c ( ”nevada” ) )
map_nv_utm <- LongLatToUTM( l a t=map_nv$ la t , lon=map_nv$ long , utm_no )
map_nv [ , c ( ’X ’ , ’Y ’ ) ] <- map_nv_utm [ , c ( ’X ’ , ’Y ’ ) ]/1000

#Earthquake - Sta t i on Mesh
pl_mesh <- ggp lot ( ) + theme_bw( ) + gg (mesh ) +

geom_path ( data=map_ca , aes ( x=X, y=Y) , c o l o r=’ black ’ ) +
geom_path ( data=map_nv , aes ( x=X, y=Y) , c o l o r=’ black ’ )+
geom_point ( data=X_eq , aes ( x=eqX , y=eqY , s i z e=as . f a c t o r ( ’EQ’ ) ,

c o l o r=as . f a c t o r ( ’EQ’ ) ) ) +
geom_point ( data=X_sta , aes ( x=staX , y=staY , s i z e=as . f a c t o r ( ’STA ’ ) ,

c o l o r=as . f a c t o r ( ’STA ’ ) ) ) +
s c a l e_s i z e_manual ( va lue s=c ( 2 . 0 , 0 . 5 ) ,

l a b e l s = c ( ’ Earthquakes ’ , ’ S t a t i on s ’ ) ,
name=element_blank ( ) ) +

s c a l e_co l o r_manual ( va lue s=c ( s e t1 [ 1 ] , s e t1 [ 2 ] ) ,
l a b e l s = c ( ’ Earthquakes ’ , ’ S t a t i on s ’ ) ,
name=element_blank ( ) ) +

labs (x=”X (km) ” , y=”Y (km) ” ) +
theme ( p l o t . t i t l e=element_text ( s i z e =20) ,

ax i s . t i t l e=element_text ( s i z e =20) ,
ax i s . t ex t . y=element_text ( s i z e =20) ,
ax i s . t ex t . x=element_text ( s i z e =20) ,
l egend . key . s i z e = uni t (1 , ’cm ’ ) ,
l egend . t ex t=element_text ( s i z e =20) ,
l egend . p o s i t i o n = c (0 . 2 0 , 0 . 10 ) )

# p lo t o f non - e rgod i c terms mean and sd o f s p a t i a l l y vary ing event terms
#dc_1e map mean
pl_dc_1e_mu_map <- ggp lot ( ) + theme_bw( )
p l_dc_1e_mu_map <- p lo t_f i e l d ( c o e f f_1e$mean , mesh ,

xrange=c ( -200 ,800) , yrange=c (3400 ,4750) ,
p l=pl_dc_1e_mu_map)

p l_dc_1e_mu_map <- p l_dc_1e_mu_map + geom_path ( data=map_ca , aes ( x=X, y=Y) ,
c o l o r=’ black ’ ) +

geom_path ( data=map_nv , aes ( x=X, y=Y) , c o l o r=’ black ’ ) +
geom_point ( data=X_eq , aes ( x=eqX , y=eqY) ,

c o l o r=I ( ” black ” ) , s i z e =0.4) +
labs (x=”X (km) ” , y=”Y (km) ” ) +
theme ( ax i s . t i t l e = element_text ( s i z e =20) ,

ax i s . t ex t . y = element_text ( s i z e =20) ,
ax i s . t ex t . x = element_text ( s i z e =20) )

#dc_1e map sigma
pl_dc_1e_sd_map <- ggp lot ( ) + theme_bw( )
p l_dc_1e_sd_map <- p lo t_f i e l d ( c o e f f_1e$sd , mesh ,

xrange=c ( -200 ,800) , yrange=c (3400 ,4750) ,
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pl=pl_dc_1e_sd_map)
p l_dc_1e_sd_map <- p l_dc_1e_sd_map + geom_path ( data=map_ca , aes ( x=X, y=Y) ,

c o l o r=’ black ’ ) +
geom_path ( data=map_nv , aes ( x=X, y=Y) , c o l o r=’ black ’ ) +
geom_point ( data=X_eq , aes ( x=eqX , y=eqY) ,

c o l o r=I ( ” black ” ) , s i z e =0.4) +
labs (x=”X (km) ” , y=”Y (km) ” ) +
theme ( ax i s . t i t l e = element_text ( s i z e =20) ,

ax i s . t ex t . y = element_text ( s i z e =20) ,
ax i s . t ex t . x = element_text ( s i z e =20) )

#dc_1as map mean
pl_dc_1as_mu_map <- ggp lot ( ) + theme_bw( )
p l_dc_1as_mu_map <- p lo t_f i e l d ( c o e f f_1as $mean , mesh ,

xrange=c ( -200 ,800) , yrange=c (3400 ,4750) ,
p l=pl_dc_1as_mu_map)

p l_dc_1as_mu_map <- p l_dc_1as_mu_map + geom_path ( data=map_ca , aes ( x=X, y=Y) ,
c o l o r=’ black ’ ) +

geom_path ( data=map_nv , aes ( x=X, y=Y) , c o l o r=’ black ’ ) +
geom_point ( data=X_sta , aes ( x=staX , y=staY ) ,

c o l o r=I ( ” black ” ) , s i z e =0.2) +
labs (x=”X (km) ” , y=”Y (km) ” ) +
theme ( ax i s . t i t l e = element_text ( s i z e =20) ,

ax i s . t ex t . y = element_text ( s i z e =20) ,
ax i s . t ex t . x = element_text ( s i z e =20) )

#dc_1as map sigma
pl_dc_1as_sd_map <- ggp lot ( ) + theme_bw( )
p l_dc_1as_sd_map <- p lo t_f i e l d ( c o e f f_1as $sd , mesh ,

xrange=c ( -200 ,800) , yrange=c (3400 ,4750) ,
p l=pl_dc_1as_sd_map)

p l_dc_1as_sd_map <- p l_dc_1as_sd_map + geom_path ( data=map_ca , aes ( x=X, y=Y) ,
c o l o r=’ black ’ ) +

geom_path ( data=map_nv , aes ( x=X, y=Y) , c o l o r=’ black ’ ) +
geom_point ( data=X_sta , aes ( x=staX , y=staY ) ,

c o l o r=I ( ” black ” ) , s i z e =0.2) +
labs (x=”X (km) ” , y=”Y (km) ” ) +
theme ( ax i s . t i t l e = element_text ( s i z e =20) ,

ax i s . t ex t . y = element_text ( s i z e =20) ,
ax i s . t ex t . x = element_text ( s i z e =20) )

#po s t e r i o r d i s t r i b u t i o n s
#dc_0
pl_dc_0_post <- ggp lot ( post_dc_0, aes (x , y ) ) + theme_bw( ) + geom_l i n e ( ) +

geom_v l i n e ( x i n t e r c ep t = hyp_param [ ’ dc_0 ’ , ’mean ’ ] ,
c o l ou r = ” red ” ) +

labs (x = ’ dc_0 ’ , y = ’ p o s t e r i o r ’ , t i t l e=’ Po s t e r i o r dc_0 ’ ) +
theme ( p l o t . t i t l e=element_text ( s i z e =20) ,

ax i s . t i t l e=element_text ( s i z e =20) ,
ax i s . t ex t . y=element_text ( s i z e =20) ,
ax i s . t ex t . x=element_text ( s i z e =20) )

#omega_1e
p l_omega_1e_post <- ggp lot ( post_omega_1e , aes (x , y ) ) + theme_bw( ) +

geom_l i n e ( ) +
geom_v l i n e ( x i n t e r c ep t = hyp_param [ ’ omega_1e ’ , ’mean ’ ] ,

c o l ou r = ” red ” ) +
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l ab s ( x = ’ omega_1e ’ , y = ’ p o s t e r i o r ’ ,
t i t l e=’ Po s t e r i o r omega_1e ’ ) +

theme ( p l o t . t i t l e=element_text ( s i z e =20) ,
ax i s . t i t l e=element_text ( s i z e =20) ,
ax i s . t ex t . y=element_text ( s i z e =20) ,
ax i s . t ex t . x=element_text ( s i z e =20) )

#omega_1as
p l_omega_1as_post <- ggp lot ( post_omega_1as , aes (x , y ) ) + theme_bw( ) +

geom_l i n e ( ) +
geom_v l i n e ( x i n t e r c ep t = hyp_param [ ’ omega_1as ’ , ’mean ’ ] ,

c o l ou r = ” red ” ) +
labs (x = ’ omega_1as ’ , y = ’ p o s t e r i o r ’ ,

t i t l e=’ Po s t e r i o r omega_1as ’ ) +
theme ( p l o t . t i t l e=element_text ( s i z e =20) ,

ax i s . t i t l e=element_text ( s i z e =20) ,
ax i s . t ex t . y=element_text ( s i z e =20) ,
ax i s . t ex t . x=element_text ( s i z e =20) )

#omega_1bs
p l_omega_1bs_post <- ggp lot ( post_omega_1bs , aes (x , y ) ) + theme_bw( ) +

geom_l i n e ( ) +
geom_v l i n e ( x i n t e r c ep t = hyp_param [ ’ omega_1bs ’ , ’mean ’ ] ,

c o l ou r = ” red ” ) +
labs (x = ’ omega_1bs ’ , y = ’ p o s t e r i o r ’ ,

t i t l e=’ Po s t e r i o r omega_1bs ’ ) +
theme ( p l o t . t i t l e=element_text ( s i z e =20) ,

ax i s . t i t l e=element_text ( s i z e =20) ,
ax i s . t ex t . y=element_text ( s i z e =20) ,
ax i s . t ex t . x=element_text ( s i z e =20) )

#e l l _1e
p l_e l l _1e_post <- ggp lot ( post_e l l _1e , aes (x , y ) ) + theme_bw( ) +

geom_l i n e ( ) +
geom_v l i n e ( x i n t e r c ep t = hyp_param [ ’ e l l _1e ’ , ’mean ’ ] ,

c o l ou r = ” red ” ) +
labs (x = ’ e l l _1e ’ , y = ’ p o s t e r i o r ’ ,

t i t l e=’ Po s t e r i o r e l l _1e ’ ) +
theme ( p l o t . t i t l e=element_text ( s i z e =20) ,

ax i s . t i t l e=element_text ( s i z e =20) ,
ax i s . t ex t . y=element_text ( s i z e =20) ,
ax i s . t ex t . x=element_text ( s i z e =20) )

#e l l _1as
p l_e l l _1as_post <- ggp lot ( post_e l l _1as , aes (x , y ) ) + theme_bw( ) +

geom_l i n e ( ) +
geom_v l i n e ( x i n t e r c ep t = hyp_param [ ’ e l l _1as ’ , ’mean ’ ] ,

c o l ou r = ” red ” ) +
labs (x = ’ e l l _1as ’ , y = ’ p o s t e r i o r ’ ,

t i t l e=’ Po s t e r i o r e l l _1as ’ ) +
theme ( p l o t . t i t l e=element_text ( s i z e =20) ,

ax i s . t i t l e=element_text ( s i z e =20) ,
ax i s . t ex t . y=element_text ( s i z e =20) ,
ax i s . t ex t . x=element_text ( s i z e =20) )

Listing 7.10. Post-processing section of type-1 NGMM INLA regression file. Plotting of spatially
varying coefficients and posterior distributions.
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The Listing 7.11 creates the output folder out_d i r to save the data frames generated in the post-
processing section. More specifically, the exported data frames include the followings.

• *_i n l a_hyperparameters . csv contains the mean, standard deviation, and main

quantiles of the NGMM hyper-parameters.

• *_i n l a_r e s i d u a l s . csv contains the mean non-ergodic adjustment and total, within-
event, and between-event non-ergodic residuals.

• *_i n l a_c o e f f i c i e n t s . csv includes the mean estimate and epistemic uncertainty of
the non-ergodic terms.

• *_i n l a_hype rpo s t e r i o r . csv contains the full marginal posterior distributions of the
NGMM hyper-parameters.

Additionally, the figures presented in Listing 7.10 are saved in the f i g u r e s subdirectory.
# Write Out
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
f i g_d i r <- f i l e . path ( out_d i r , ’ f i g u r e s ’ )
#c r ea t e output d i r e c t o r i e s
d i r . c r e a t e ( out_dir , showWarnings = FALSE)
d i r . c r e a t e ( f i g_dir , showWarnings = FALSE)
#data f i l e s
# - - - - - - - - - - - - - - -
wr i t e . csv ( as . data . frame ( t ( hyp_param) ) ,

f i l e=f i l e . path ( out_dir ,
paste0 ( out_fname , ’_i n l a_hyperparameters ’ , ’ . csv ’ ) ) )

wr i t e . csv ( df_pr ed i c t_summary ,
f i l e=f i l e . path ( out_dir ,

paste0 ( out_fname , ’_i n l a_r e s i d u a l s ’ , ’ . csv ’ ) ) ,
row . names = FALSE )

wr i t e . csv ( df_co e f f ,
f i l e=f i l e . path ( out_dir ,

paste0 ( out_fname , ’_i n l a_c o e f f i c i e n t s ’ , ’ . csv ’ ) ) ,
row . names = FALSE )

wr i t e . csv (hyp_pos t e r i o r ,
f i l e=f i l e . path ( out_dir ,

paste0 ( out_fname , ’_i n l a_hype rpo s t e r i o r ’ , ’ . csv ’ ) ) ,
row . names = FALSE )

#f i g u r e s
# - - - - - - - - - - - - - - -
#mesh
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_mesh ’ , ’ . png ’ ) ) ,

p l o t=pl_mesh , dev i c e=’ png ’ )
#s p a t i a l d i s t r i b u t i o n o f c o e f f i c i e n t s
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_map_dc_1e_mu ’ , ’ . png ’ ) ) ,

p l o t=pl_dc_1e_mu_map, dev i ce=’ png ’ )
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_map_dc_1e_sd ’ , ’ . png ’ ) ) ,

p l o t=pl_dc_1e_sd_map, dev i ce=’ png ’ )
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_map_dc_1as_mu ’ , ’ . png ’ ) ) ,

p l o t=pl_dc_1as_mu_map, dev i ce=’ png ’ )
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_map_dc_1as_sd ’ , ’ . png ’ ) ) ,

p l o t=pl_dc_1as_sd_map, dev i ce=’ png ’ )

94



#po s t e r i o r d i s t r i b u t i o n
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_post_dc_0 ’ , ’ . png ’ ) ) ,

p l o t=pl_dc_0_post , dev i c e=’ png ’ )
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_post_omega_1e ’ , ’ . png ’ ) ) ,

p l o t=pl_omega_1e_post , dev i c e=’ png ’ )
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_post_omega_1as ’ , ’ . png ’ ) ) ,

p l o t=pl_omega_1as_post , dev i c e=’ png ’ )
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_post_omega_1bs ’ , ’ . png ’ ) ) ,

p l o t=pl_omega_1bs_post , dev i c e=’ png ’ )
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_post_e l l _1e ’ , ’ . png ’ ) ) ,

p l o t=pl_e l l _1e_post , dev i c e=’ png ’ )
ggsave ( f i l e . path ( f i g_dir , paste0 ( out_fname , ’_post_e l l _1as ’ , ’ . png ’ ) ) ,

p l o t=pl_e l l _1as_post , dev i c e=’ png ’ )

rm( f i t_i n l a_s p a t i a l )
r e turn (NA)
Listing 7.11. Post-processing section of type-1 NGMM INLA regression file. Exporting Results.

7.2.2 R-INLA regression function for Type-2 dataset

This subsection presents the modifications to Section 7.2.1 to run the INLA regression for the

NGMMtype-2. TheR code for this regression is implemented in regress ion_inla_model2_uncorr
_c e l l s_unbounded_hyp .R, which canbe found in the ngmm_tools/Analyses /R_lib/ r e g r e s s i o n /
i n l a subdirectory of the Github repository.

Pre-processing:

In addition to the input arguments required for NGMM type-1, mandatory arguments for the

NGMM type-2 regression are as follows.

• df_c e l l i n f o contains the information about the cell IDs and coordinates (Section 4.2).

• df_ce l lmat contains the information about the lengths of the cell-path segments for
every ground motion in the regression flatfile.

• c_a_erg is the ergodic value of the anelastic attenuation coefficient.

The main additional pre-processing steps in NGMM-type2 are associated with the processing

of df_c e l l i n f o (Listing 7.12). In df_ce l lmat <- df_ce l lmat [ match ( df_ f l a t f i l e $ rsn ,
df_ce l lmat $ rsn ) , ] , the cell-path lengths are reorganized to be in the same order as their
corresponding ground motions. To reduce the computational cost, only the cell with one or

more paths crossing them are used in the regression ( c e l l_va l i d <- colSums ( df_ce l lmat [ ,
c e l l_names_a l l ] ) > 0). Lastly, the cell-path distance matrix is converted to a sparse format
(RC_spar s e <- as (RC, ”dgCMatrix” )) to improve the efficiency of the matrix multiplication
operations.

#c e l l data
#keep only c e l l d i s t ance f o r r e co rd s in df_ f l a t f i l e
df_ce l lmat <- df_ce l lmat [ match ( df_ f l a t f i l e $ rsn , df_ce l lmat $ rsn ) , ]
a s s e r t_that ( nrow ( df_ f l a t f i l e ) == nrow ( df_ce l lmat ) )
#c e l l i n f o
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c e l l_names_a l l <- colnames ( df_ce l lmat )
c e l l_names_a l l <- c e l l_names_a l l [ s t r_de te c t ( c e l l_names_a l l , ’ c . ’ ) ]
c e l l_id s_a l l <- as . i n t e g e r ( s t r_ex t r a c t ( c e l l_names_a l l , ’ \\d+’ ) )
#c e l l s with c r o s s i n g paths
c e l l_va l i d <- colSums ( df_ce l lmat [ , c e l l_names_a l l ] ) > 0
c e l l_names <- c e l l_names_a l l [ c e l l_va l i d ]
c e l l_id s <- c e l l_id s_a l l [ c e l l_va l i d ]

#d i s t ance matrix
RC <- as . matrix ( df_ce l lmat [ , c e l l_names ] )
RC_spar s e <- as (RC , ”dgCMatrix” ) #spar s e matrix
p r i n t ( paste ( ’max R_rup m i s f i t ’ , max( abs ( rowSums(RC) - df_ f l a t f i l e $Rrup) ) ) )
Listing 7.12. Preprocessing section of type-2 NGMM INLA regression file.

Regression:

The fixed effects (Listing 7.13) include an additional term (R), which corresponds to the mean of
the cell-specific anelastic attenuation coefficient. It is assigned a normal prior distributionwith the

ergodic value of the anelastic coefficient as its mean and 1000 as its precision. In df_i n l a_covar ,
the closest-point-on-rupture to site distance (Rrup) is assigned as a covariate for the cell-specific

anelastic attenuation mean (R=df_ f l a t f i l e $Rrup).
# Run INLA, f i t model
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#f i x ed e f f e c t s
#- - - - - - - - - - - - - - - - - -
#p r i o r on the f i x ed e f f e c t s
p r i o r_f i x ed <- l i s t (mean . i n t e r c e p t = 0 , prec . i n t e r c e p t = 5 ,

mean = ( l i s t ( in tcp =0.0 , R=c_a_erg , d e f au l t =0) ) ,
prec = ( l i s t ( in tcp =5.0 , R=10000 , d e f au l t =0.01) ) )

#cova r i a t e s
df_i n l a_covar <- data . frame ( in tcp=1, R=df_ f l a t f i l e $Rrup ,

eq=eq_id , s ta=sta_id )
Listing 7.13. Regression Section of type-2 NGMM INLA regression file. Definition of fixed-effects.

The variation of the cell-specific anelastic attenuation coefficients is modeled with a penalized

complexity prior distribution such that there is less than 10% probability ωca,P will be greater

than 0.01 (P (ωca,P > 0.01) = 0.1). The cell indices are stored in idx_c e l l of the df_i n l a_covar
dataframe.

#ce l l - s p e c i f i c a n e l a s t i c a t t enuat ion
#- - - - - - - - - - - - - - - - - -
p r i o r_omega_ca <- l i s t ( prec = l i s t ( p r i o r = ’ pc . prec ’ , param = c (0 . 0 1 , 0 . 1 ) ) )

#c e l l i d s
df_i n l a_covar $ idx_c e l l <- 1 : nrow ( df_i n l a_covar )
Listing 7.14. Regression section of type-2 NGMM INLA regression file. Definition of aleatory prior

distributions

The additional terms in form_i n l a_s p a t i a l for the type-2 NGMM are the mean effect of

the cell-specific anelastic attenuation introduced by R, and the variation cell-specific anelastic
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attenuation introduced by the z model ( f ( idx_c e l l , model = ”z” , Z = RC_sparse , hyper=
p r i o r_omega_ca )) where idx_c e l l is the column name for the attenuation cell indices in
df_i n l a_covar . The s tk_i n l a_s p a t i a l is built in the same way as for NGMM type-1.

#in l a model
#- - - - - - - - - - - - - - - - - -
#fun c t i o n a l form ( with s p a t i a l var )
form_i n l a_s p a t i a l <- y ∼ 0 + intcp + R +

f ( eq , model=” i i d ” , hyper=p r i o r_tau_0) +
f ( sta , model=” i i d ” , hyper=p r i o r_omega_1bs ) +
f ( idx . eq , model = spde_eq ) +
f ( idx . sta , model = spde_sta ) +
f ( idx_c e l l , model = ”z” ,

Z = RC_sparse , hyper=p r i o r_omega_ca )

#bu i ld s tack
stk_i n l a_s p a t i a l <- i n l a . s tack ( data = l i s t ( y = y_data ) ,

A = l i s t (A_eq , A_sta , 1) ,
e f f e c t s = l i s t ( idx . eq = idx . eq ,

idx . s ta = idx . sta ,
df_i n l a_covar ) ,

tag = ’model_i n l a_s p a t i a l ’ )
Listing 7.15. Regression section of type-2 NGMM INLA regression file. Functional form

formulation.

Post-processing:

The post-processing section for NGMM type-2 follows a similar structure to the post-

processing section for NGMM type-1. The main addition is the development of the data-

frame with the estimated non-ergodic anelastic attenuation coefficients (Listing 7.16).

The estimated variation of the attenuation cell coefficients can be found in idx_c e l l
from f i t_i n l a_s p a t i a l $summary . random. The mean and standard deviation for the

variation of the attenuation cells is extracted from the regression model in c e l l_atten <-
f i t_i n l a_s p a t i a l $summary . random$ idx_c e l l [ - ( 1 : n_data ) , ] , where n_data is the number
of groundmotions. That is because the first n_data rows correspond to the posterior distributions
of the product of the cell-path segment length matrix and the variation of the attenuation cells,

and the next n_c e l l rows correspond to the posterior distributions of variation of the attenuation
cells, directly. The first ngm rows correspond to the posterior distributions of the product of

cell-path segment length matrix and the variation of the estimated cell attenuation coefficients,

and the next nc rows correspond to the posterior distributions of variation of the estimated cell

attenuation coefficients, directly. ngm is the number of ground motions, and nc is the number of

cells.

#c e l l s p e c i f i c a n e l a s t i c a t t enuat ion
c e l l_atten <- f i t_i n l a_s p a t i a l $summary . random$ idx_c e l l [ - ( 1 : n_data ) , ]
#c e l l mean and std
cap_mu <- c e l l_atten $mean + hyp_param [ ’mu_cap ’ , ’mean ’ ]
cap_s i g <- sq r t ( c e l l_atten $sd^2 + hyp_param [ ’mu_cap ’ , ’ sd ’ ] ^2 )

#summary at tenuat ion c e l l s
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df_cat ten_summary <- data . frame ( c e l l i d=c e l l_ids , c_cap_mean=cap_mu,
c_cap_s i g=cap_s i g )

df_cat ten_summary <- merge ( df_c e l l i n f o [ c ( ’ c e l l i d ’ , ’ ce l lname ’ ,
’mptLat ’ , ’mptLon ’ ,
’mptX ’ , ’mptY ’ , ’mptZ ’ , ’UTMzone ’ ) ] ,

d f_cat ten_summary , by=c ( ’ c e l l i d ’ ) )
Listing 7.16. Post-processing section of type-2 NGMM INLA regression file. Summary of non-

ergodic anelastic attenuation coefficients. and residuals.

7.2.3 R-INLA regression function for Type-3 dataset

The changes for the modeling of the NGMM type-3 are presented in this section. The R code for

this regression is implemented in regression_inla_model2_uncorr_cells_unbounded_hyp .R.

Pre-processing:

The additional input arguments for this regression are as follows.

• c_2_erg is the ergodic value for the geometrical spreading coefficient.

• c_3_erg is the ergodic value for the VS30 scaling coefficient.

Furthermore, df_ f l a t f i l e requires two additional columns; x_2 includes the geometrical
spreading scaling factors of c2,P (tE) for each ground motion, and x_3 includes the VS30 scaling
factors of c3,S(tS) for each ground motion.

The extra variables which are defined in the pre-processing section are x_2, a column vector with
the geometrical spreading scaling factors, and x_3, a column vector with the VS30 scaling factors.

#cova r i a t e s
x_2 <- df_ f l a t f i l e [ , ’ x_2 ’ ]
x_3 <- df_ f l a t f i l e [ , ’ x_3 ’ ]

Listing 7.17. Preprocessing section of type-3 NGMM INLA regression file.

Regression:

In addition to the fixed effects described in the previous sections, the functional form of this

NGMM includes x2 and x3. x2 and x3 correspond to the mean of spatially varying geometrical
spreading and VS30 scaling, respectively. They are assigned normal prior distributions with their
ergodic values as their mean and 25 precision.

# Run INLA, f i t model
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#f i x ed e f f e c t s
#- - - - - - - - - - - - - - - - - -
#p r i o r on the f i x ed e f f e c t s
p r i o r_f i x ed <- l i s t (mean . i n t e r c e p t = 0 , prec . i n t e r c e p t = 5 ,

mean = ( l i s t ( in tcp =0.0 , R= -0.005 ,
x2=c_2_erg , x3=c_3_erg ,
d e f au l t =0) ) ,

prec = ( l i s t ( in tcp =5.0 , R=10000 ,
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x2=25.0 , x3=25.0 ,
d e f au l t =0.01) ) )

#cova r i a t e s
df_i n l a_covar <- data . frame ( in tcp=1, R=df_ f l a t f i l e $Rrup ,

x2=x_2, x3=x_3,
eq=eq_id , s ta=sta_id )

Listing 7.18. Regression Section of type-3 NGMM INLA regression file. Definition of fixed-effects
for geometrical spreading and VS30 scaling.

The spatially varying component of the geometrical spreading and VS30 scaling are defined in
Listing 7.19. The SPDE object and prior distribution of c2,P (tE) is contained in spde_eq_gs , while
the SPDE object and prior distribution of c3,S(tS) is contained in spde_sta_vs30 . The correlation
length and scale of c2,P (tE) (`2,P and ω2,P ) are assigned a joint penalized complexity prior such

that P (`2,P < 100) = 0.95 and P (ω2,P > 0.3) = 0.1. Similarly, `3,S and ω3,S) are assigned a

joint penalized complexity prior such that P (`3,S < 100) = 0.95 and P (ω3,S > 0.4) = 0.1. Since
c2,P (tE) varies as a function of the earthquake coordinates, its projection matrix for all event
location is created in i n l a . spde .make .A(mesh , l o c=as . matrix (X_eq_a l l ) , we ights=x_2).
The argument weights = x_2 specifies the scaling factors for the geometrical spreading.

Equivalently, the projection matrix for the VS30 scaling is created in i n l a . spde .make .A(mesh ,
l o c=as . matrix (X_sta_a l l ) , we ights=x_3) for all site locations. idx . eq_gs and idx . s ta_vs30
contain the mesh indices for the geometrical spreading and VS30 scaling terms, respectively.

#sp a t i a l model
#- - - - - - - - - - - - - - - - - -
#spde geom spread ing term pr i o r
spde_eq_gs <- i n l a . spde2 . pcmatern (mesh = mesh , alpha = alpha ,

p r i o r . range = c (100 , 0 . 95 ) ,
p r i o r . sigma = c ( . 3 0 , 0 . 1 ) )

#spde Vs30 term pr i o r
spde_sta_vs30 <- i n l a . spde2 . pcmatern (mesh = mesh , alpha = alpha ,

p r i o r . range = c (100 , 0 . 95 ) ,
p r i o r . sigma = c ( . 4 0 , 0 . 1 ) )

A_eq_gs <- i n l a . spde .make .A(mesh , l o c = as . matrix (X_eq_a l l ) ,
we ights = x_2)

idx . eq_gs <- i n l a . spde .make . index ( ” idx . eq_gs ” , spde_eq_gs $n . spde )
A_sta_vs30 <- i n l a . spde .make .A(mesh , l o c = as . matrix (X_sta_a l l ) ,

we ights = x_3)
idx . s ta_vs30 <- i n l a . spde .make . index ( ” idx . s ta_vs30 ” , spde_sta_vs30$n . spde )
Listing 7.19. Regression section of type-3 NGMM INLA regression file. Definition of spatially

varying geometrical spreading and VS30 scaling.

The functional form for type-3 NGMM, in addition to the term of the previous functional forms,

includes the mean effect of the geometrical spreading (x2), the mean effect of the VS30 scaling
(x3), the spatially varying effect of geometrical spreading ( f ( idx . eq_gs , model=spde_eq_gs )),
and the spatially varying effect of the VS30 scaling f ( idx . s ta_vs30 , model=spde_sta_vs30 ) .
The s tk_i n l a_s p a t i a l is built in the same way as for NGMM types.

#in l a model
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#- - - - - - - - - - - - - - - - - -
#fun c t i o n a l form ( with s p a t i a l var )
form_i n l a_s p a t i a l <- y ∼ 0 + intcp + x2 + x3 + R +

f ( eq , model=” i i d ” , hyper=p r i o r_tau_0) +
f ( sta , model=” i i d ” , hyper=p r i o r_omega_1bs ) +
f ( idx . eq_const , model = spde_eq_const ) +
f ( idx . s ta_const , model = spde_sta_const ) +
f ( idx . eq_gs , model = spde_eq_gs ) +
f ( idx . s ta_vs30 , model = spde_sta_vs30 ) +
f ( idx_c e l l , model = ”z” , Z = RC_sparse ,

hyper=p r i o r_omega_ca )

#bu i ld s tack
stk_i n l a_s p a t i a l <- i n l a . s tack ( data = l i s t ( y = y_data ) ,

A = l i s t (A_eq_const , A_sta_const ,
A_eq_gs , A_sta_vs30 , 1) ,

e f f e c t s = l i s t ( idx . eq_const = idx . eq_const ,
idx . s ta_const = idx . s ta_const ,
idx . eq_gs = idx . eq_gs ,
idx . s ta_vs30 = idx . s ta_vs30 ,
df_i n l a_covar ) ,

tag = ’model_i n l a_s p a t i a l ’ )
Listing 7.20. Regression section of type-3 NGMM INLA regression file. Functional form

formulation.

Post-processing:

The post-processing section of NGMM type-3 creates the same output files as the post-processing

section for NGMM-type2. The main additions are the summary of the posterior distributions of

the mean, scale, and correlation length of the spatially varying geometrical spreading and VS30 in
hyp_param and hyp_po s t e r i o r , as well, as the posterior mean, mode, and standard-deviation
for c2,P and c3,S at all event and station locations in df_c o e f f .

## Post - p r o c e s s i ng Resu l t s
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
#hyper - parameters
hyp_param <- data . frame ( matrix ( nco l = 6 , nrow = 0) )
colnames (hyp_param) <- colnames ( f i t_i n l a_s p a t i a l $summary . hyperpar )

hyp_param [ ’ dc_0 ’ , ] <- f i t_i n l a_s p a t i a l $summary . f i x ed [ ’ in t cp ’ , ]
#means o f s p a t i a l terms
hyp_param [ ’mu_2p ’ , ] <- f i t_i n l a_s p a t i a l $summary . f i x ed [ ’ x2 ’ , ]
hyp_param [ ’mu_3s ’ , ] <- f i t_i n l a_s p a t i a l $summary . f i x ed [ ’ x3 ’ , ]
#c o r r e l a t i o n l eng th s o f s p a t i a l terms
hyp_param [ ’ e l l _1e ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’Range f o r idx . eq_const ’ , ]
hyp_param [ ’ e l l _1as ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’Range f o r idx . s ta_const ’ , ]
hyp_param [ ’ e l l _2p ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’Range f o r idx . eq_gs ’ , ]
hyp_param [ ’ e l l _3s ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’Range f o r idx . s ta_vs30 ’ , ]
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#standard dev i a t i on s o f s p a t i a l terms
hyp_param [ ’ omega_1e ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ Stdev f o r idx . eq_const ’ , ]
hyp_param [ ’ omega_1as ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ Stdev f o r idx . s ta_const ’ , ]
hyp_param [ ’ omega_1bs ’ , ] <- 1/ sq r t ( f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ P r e c i s i on f o r s ta ’ , ] )
hyp_param [ ’ omega_2p ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ Stdev f o r idx . eq_gs ’ , ]
hyp_param [ ’ omega_3s ’ , ] <- f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ Stdev f o r idx . s ta_vs30 ’ , ]
#an e l a s t i c a t t enuat ion
hyp_param [ ’mu_cap ’ , ] <- f i t_i n l a_s p a t i a l $summary . f i x ed [ ’R ’ , ]
hyp_param [ ’ omega_cap ’ , ] <- 1/ sq r t ( f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ P r e c i s i on f o r idx_c e l l ’ , ] )
#a l e a t o ry terms
hyp_param [ ’ phi_0 ’ , ] <- 1/ sq r t ( f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ P r e c i s i on f o r the Gaussian obs e rva t i on s ’ , ] )
hyp_param [ ’ tau_0 ’ , ] <- 1/ sq r t ( f i t_i n l a_s p a t i a l $summary . hyperpar

[ ’ P r e c i s i on f o r eq ’ , ] )
#unava i l ab l e sd f o r transformed va r i a b l e s
hyp_param [ c ( ’ omega_1bs ’ , ’ omega_cap ’ , ’ phi_0 ’ , ’ tau_0 ’ ) , ’ sd ’ ] <- NA

## Summarize c o e f f i c i e n t s and r e s i d u a l s
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
df_f l a t i n f o <- df_ f l a t f i l e [ , c ( ’ r sn ’ , ’ eq id ’ , ’ s sn ’ ,

’ eqLat ’ , ’ eqLon ’ , ’ s taLat ’ , ’ staLon ’ ,
’ eqX ’ , ’ eqY ’ , ’ staX ’ , ’ staY ’ ) ]

#summary c o e f f i c i e n t s
df_c o e f f <- data . frame ( rsn=df_f l a t i n f o $ rsn ,

dc_0_mean=hyp_param [ ’ dc_0 ’ , ’mean ’ ] ,
dc_1e_mean=c o e f f_1e_mu[ eq_inv ] ,
dc_1as_mean=c o e f f_1as_mu[ s ta_inv ] ,
dc_1bs_mean=c o e f f_1bs_mu[ s ta_inv ] ,
c_2p_mean=c o e f f_2p_mu[ eq_inv ] ,
c_3s_mean=c o e f f_3s_mu[ s ta_inv ] ,
dc_0_s i g=hyp_param [ ’ dc_0 ’ , ’ sd ’ ] ,
dc_1e_s i g=c o e f f_1e_s i g [ eq_inv ] ,
dc_1as_s i g=c o e f f_1as_s i g [ s ta_inv ] ,
dc_1bs_s i g=c o e f f_1bs_s i g [ s ta_inv ] ,
c_2p_s i g=c o e f f_2p_s i g [ eq_inv ] ,
c_3s_s i g=c o e f f_3s_s i g [ s ta_inv ] )

df_c o e f f <- merge ( df_f l a t i n f o , df_co e f f , by=c ( ’ rsn ’ ) )

Listing 7.21. Post-processing section of type-3 NGMM INLA regression file.
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8 LESSONS LEARNED FROM APPLYING NON-
ERGODIC VARYING COEFFICIENT MODEL TO
CONTROLLED PHYSICS-BASED SIMULATION
DATASETS

Physic-based groundmotion simulation datasets present twomajor advantages. First, simulations

can be obtained for any source regions, sites, and paths, all of which can be sampled many times.

Hence, the source, site, and path effects can bemore accurately estimated compared to the sparse

empirical datasets. Second, since the source parameters of earthquakes, site conditions, and the

underlying velocity model used in simulations are known, the overall accuracy of the variable

coefficient model, VCM, outputs can be directly verified against the inputs.

In this section, we discuss the work on applying a modified VCM on one CyberShake simulation

dataset in southern California (hereafter CS15.4, Meng and Goulet (2022)). CyberShake

incorporates an ERF with a full 3D wave propagation to perform physics-based PSHA by

computing ground motions at chosen sites (Graves et al., 2011; Jordan and Callaghan, 2018).

RotD50 pseudo-spectral acceleration (PSA) at periods of 2, 3, 5, and 10s are calculated from each

simulated seismogram. CS15.4 includes 336 sites, 360,472 events and 97,214,974 seismograms

(Figure 8.1). Meng and Goulet (2022) randomly generated four reduced datasets of 100 (CS15.4-

100), 200 (CS15.4-200), 600 (CS15.4-600) and 1000 (CS15.4-1000) events (Table 8.1 and Figure

8.2). Then, VCM is applied to the four datasets, and the outputs are compared among themselves

to check the sensitivity on dataset sizes. Next, Meng and Goulet (2022) identified results

consistent with the input components, which can be used to constrain better future Probabilistic

Seismic Hazard Analysis (PSHA) applications. When discrepancies emerge between inputs and

outputs, Meng and Goulet (2022) explored their causes by conducting more tests on controlled

datasets and propose potential solutions for future VCM applications.

8.1 METHODOLOGY

Meng and Goulet (2022) defined a simple function form to develop the ergodic GMM, which

includes magnitude (M ) scaling, geometric spreading, magnitude-distance interaction and linear

site response:
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Table 8.1. SCEC Simulations

Dataset name Number of events Number of records

CS15.4-100 100 21, 269
CS15.4-200 200 56, 252
CS15.4-600 600 159, 659
CS15.4-1000 1000 265, 252

ferg = c0 + c1M + c2M
2 + (c3 + c4M) log

(√
R2

rup + h2
)
+ f(VS30) (8.1)

where h is set to 4.5km; f(VS30) is the linear site response term based on the slowness-averaged
shear wave velocity in the top 30 m of the velocity model (VS30):

fVS30
= c5 log(min(VS30, 800)/800) VS30 ≤ 1500m/sec (8.2)

fVS30
= c5 log(min(VS30, 800)/1500) VS30 > 1500m/sec (8.3)

The total residuals are decomposed into three spatially varying components (source, site, path

effects) and the remaining aleatory residuals:

yes = ferg + δL2L(~xe) + δS2S(~xs) + δP2P (~xe, ~xs) + δB0
e + δWS0

es (8.4)

where δL2L(~xe) are the source effects that spatially vary with event locations ~xe; δS2S(~xs) are
the site effects that spatially varywith site locations ~xs; δP2P (~xe, ~xs) are the spatially varying path
effects; δB0

e and δWS0
es are the remaining residuals after all spatial correlations are considered.

For this study, Meng and Goulet (2022) experimented with three modeling approaches for

δP2P (~xe, ~xs). The first approach is the two-dimensional (2D) cell-specific attenuation (hereafter
2D cell approach), similar to the one introduced by Dawood and Rodriguez-Marek (2013). The

entire study region is divided into 2D cells of 0.25o by 0.25o. The path effects are the sum of

anelastic attenuation from all cells along a horizontal straight line from the closest point to the

site:

δP2P (~xe, ~xs) = Σiδi∆Ri (8.5)

where δi is the attenuation per kilometer of travel in the i
th cell, which is intended to capture the

anelastic attenuation in traditional GMMdevelopment. δi is computed as an independent random
effect during regression (i.e., no spatial correlation). ∆Ri is the approximate travel distancewithin

the ith cell. The second approach is the three-dimensional (3D) cell-specific attenuation (hereafter
3D cell approach). The entire subsurface is divided vertically into 1km layers. In the top 10km,
each layer is further divided into cells of 0.25o by 0.25o. The wave propagation is assumed as a
straight line from the hypocenter to the site. The third approach only considers the aggregate

path effects along the entire path. Similar to the path term described in Al Atik et al. (2010), each
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Figure 8.1. (a) Map of CS15.4; red dots and black triangles denote events’ hypocenters and station
locations (sites), respectively; the blue box outlines the extension of the 3D velocity
model. (b) Magnitude-Rrup distribution of events in CS15.4. (c) VS30 distribution of

sites in CS15.4. Modified from Meng and Goulet (2022).

path between a source region and a site is considered unique. Meng and Goulet (2022) used

the midpoint tp between the site and the closest point of the causative fault to represent the
approximate location of a path:

δP2P (~xe, ~xs) = β1(~xmp)Rrup (8.6)

where β1(~xmp) is anelastic attenuation that spatially varies withmidpoint locations ~xmp. Hereafter

this approach will be referred to as the midpoint approach.

The next step is to determine the amount of correlation in δL2L(~xe), δS2S(~xs), and δP2P (~xmp).
This is achieved by imposing a prior distribution for theGaussian Process (Rasmussen andNickisch,

2010) on the three terms. After many trial runs with the reduced CyberShake datasets, Meng and

Goulet (2022) found the most satisfying mesh triangle size for the balance of the precision and

computational cost is 0.1o.

8.2 RESULTS

Figure 8.3 and 8.4 show the maps of δL2L(~xe) and the epistemic predictive uncertainty ωL2L(~xe)
for the four datasets, respectively (Meng and Goulet, 2022). For CS15.4-100, the variations

of δL2L(~xe) are constrained to the event locations (Figure 8.3). At locations without events,
δL2L(~xe) returns to the median value (i.e., zero) and the predictive uncertainty ωL2L(~xe)
increases significantly, as intended (Figure 8.4 and 8.4). For the three larger datasets, the

correlation lengths ` of δL2L(~xe) increase significantly and as a result, the variations of δL2L(~xe)
extend to large areas without events (Figure 8.3). Moreover, there is no longer a clear distinction

in ωL2L(~xe) between locations with and without data for the three larger datasets (Figure 8.4). In
other words, the VCM fails to capture the genuine source effects when the number of events in

CyberShake datasets increases.

The results of δS2S(~xs) and its predictive uncertainty ωS2S(~xS) are almost identical across four
datasets (Figure 8.5 and 8.6) (Meng andGoulet, 2022). Within the Ventura and Los Angeles basins,
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Figure 8.2. Map of four reduced CS15.4 datasets: red dots and black triangles denote events’
hypocenters and station locations, respectively. Most of the sites are concentrated
in the Los Angeles area, but a few are scattered farther away. Modified from Meng
and Goulet (2022).
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Figure 8.3. Results of δL2L(~xe) for the four reduced datasets. Modified from Meng and Goulet
(2022).

Figure 8.4. Results of ωL2L(~xe) for the four reduced datasets. Modified from Meng and Goulet
(2022).
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Figure 8.5. Results of δS2S(~xe) for the four reduced datasets. Modified from Meng and Goulet
(2022).

the sites have the strongest site responses. In comparison, the hard rock sites at the San Gabriel

Mountains have much weaker site responses. The site responses return to zero outside of the site

coverage, where they show increased epistemic uncertainty. The few test sites located outside of

the box show the same trends. The consistent pattern suggests that the genuine site effects of

CyberShake datasets are accurately recovered by the VCM technique.

For the 2D cell approach, the variations of δi are constrained at locationswith data (Figure 8.7), and
the uncertainty of δi increases at locations without data. However, the approach does not capture
the strong anelastic attenuation expected within the Ventura and Los Angeles basins (Figures 8.7).

In all four datasets, cells within the basins and their immediate vicinity (hereafter inner cells) have

δi close to zero (Figure 8.7), which represent the median attenuation of all the cells sampled by
seismic waves. Outside the basins (hereafter outer cells), the δi patterns are dependent on the
data distribution.

The δi results obtained by the 3D cell approach show a slight improvement over the 2D cell

approach (Meng and Goulet, 2022). At shallow depths (0− 3km), the outer cells have consistent
weak attenuation, especially for the three larger datasets, which agree with the QS maps.

However, δi of the inner cells at shallow depths are still close to zero for four datasets. (Figure
8.8). The number of inner cells with close-to-zero δi quickly decreases with depth. Below 5km,
there is no longer a distinct area with close-to-zero δi for all the datasets. Cells with weak and
strong attenuation are located randomly, with very little agreement with the QS maps at the

corresponding depth.
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Figure 8.6. Results of ωS2S(~xe) for the four reduced datasets. Modified from Meng and Goulet
(2022).

Figure 8.7. Results of δ with the 2D cell approach. Black box denotes site coverage.Modified from
Meng and Goulet (2022).
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Figure 8.8. Results of δ with the 3D cell approach at selected depths. Each row denotes one
reduced dataset. Modified from Meng and Goulet (2022).
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Figure 8.9. Results of β(~xmp) for the four reduced datasets. The black line denotes the outline of
all midpoints. Modified from Meng and Goulet (2022).

In comparison with the 2D and 3D cell approaches, the midpoint approach enables the recovery

of strong attenuations within the basins for the four datasets (Figure 8.9), and the predictive

uncertainties ωP2P (~xmp) increase at locations without data (Meng and Goulet, 2022). However,
similar to δL2L(~xe), the variations of β1(~xmp) extend to large areas without data due to the very
large correlation lengths (Figure 8.9). Moreover, the correlation lengths are evidently different

among the four datasets, which result in significantly different patterns outside the basins.

Therefore, although the midpoint approach leads to results that are more consistent with the

input velocity model, issues on the stability of the approach for different sizes remain.

8.3 DISCUSSION

The very large correlation lengths of δL2L(~xe) are likely caused by two unique properties of the
CyberShake datasets (Meng and Goulet, 2022). First, the majority of events are self-similar, that

is, they follow the same magnitude-rupture area relationship (i.e., same stress drop) (Somerville

et al., 1999). Second, the majority of events in CyberShake datasets are associated with principal

faults in California. When the number of events becomes large, they occur densely along those

faults and form large linear features (Figure 8.2). The self-similar events along large linear features

thus lead to large correlation lengths of δL2L(~xe). In R-INLA, the Gaussian Process is assumed
isotropic, that is, the process only depends on the distances between two data points, but not the

azimuth. As a result, when predicting at new locations, the large correlation length is projected

onto all azimuths. To test this hypothesis,Meng andGoulet (2022) randomly selected another 600
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Figure 8.10. (a) Map of CS15.4-600b. Events are color-coded by stress drop; sites are in black. (b)
and (c) Results of δL2L(~xe) and ωL2L(~xe)for CS15.4-600b, respectively. Modified
from Meng and Goulet (2022).

events in CS15.4 (hereafter, CS15.4-600b) under two restrictions: (1) the minimum hypocentral

distance between any two events is 10km; and (2) the stress drops are evenly distributed between
0 and 3MPa (Figure 8.10). After applying VCM to CS15.4-600b, Meng and Goulet (2022) found

that the correlation length of δL2L(~xe) becomes much smaller (Figure 9.10b). The variations
of δL2L(~xe) are constrained at event locations and correlate well with stress drops (Figure 8.3).
δL2L(~xe) also increases at locationswithout data as intended (Figure 8.10). This test confirms that
large correlation lengths of δL2L(~xe) for CyberShake datasets are indeed caused by the dense
linear distribution and uniform stress drop.

Both the 2D and 3D cell approaches do not capture the strongest attenuation at shallow depths

within the Ventura and Los Angeles basins for any reduced dataset. Although the cell-specific

attenuation term is designed to recover anelastic attenuation, in reality it includes all the

systematic effects that are not modeled in GMM. First of all, the complicated wavefields due

to the smooth 3D velocity model (e.g., strong reflections and refractions at interfaces where

seismic wave velocities change significantly, and generation of large surface waves). Second,

due to the dense site distributions in CS15.4, the azimuths from the source location to all the

sites are very similar for many events. Therefore, some source effects (e.g., radiation patterns)

are likely to be incorrectly mapped into the path effects. Third, the epistemic uncertainty of

the 3D velocity model itself is an important component of the path effects but not modeled

yet. Another issue with the cell-specific attenuation approach is the single-line assumption of

wave-propagation path. To study the sensitivity of the cell approaches, Meng and Goulet (2022)

performed a test with the 3D controlled dataset. After computing the input δP2P (~xe, ~xs) from
the hypocenter to site, we randomly shift the hypocenters by a small distance on the rupture

plane N (0, σ2
1). Now there is a subtle difference between the path used in computing the input

path effects and the path used for regression in the VCM. Even with a very small shift (σ1 = 1km),
significant deviations between the output and input δ are observed (Figure 8.11). As a result,
it can be concluded that the cell approaches are highly sensitive to the assumption of seismic

wave propagation paths. All the events in CS15.4 are above magnitude 6. The rupture plane of
a magnitude 6 earthquake typically has a length of 30km and a width of 12km. For such large
rupture planes, the point source assumption used in the VCMmay not be appropriate. In the near

future, we will continue to investigate the more accurate representation of wave-propagation

paths in CyberShake simulations and better ways to decompose the systematic effects so that
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the genuine path effects can be captured. This issue has little impact on empirical regressions,

as most events have small magnitudes and can be treated as point sources. An issue arises from

empirical datasets for larger magnitude events however, as we do not know the correct answer

from the simulations, of whether path effects are due to source, wave reflections/refractions,

or anelastic attenuation; the empirical determination of path effects should probably include

increased epistemic uncertainty.

Unlike the cell approaches, the midpoint approach only considers the aggregated attenuations

from one event to one site. As a result, the strongest attenuationswithin the basins are recovered.

However, the midpoint approach also smooths out small-scale features in attenuation patterns

by aggregating them, which results in large correlation lengths of δP2P (~xe, ~xs) (Figure 8.9).
Since R-INLA does not allow specifying the lower- or upper-bound of the correlation length,

Meng and Goulet (2022) investigated finding alternative ways to constrain correlation length of

δP2P (~xe, ~xs) during VCM regression. One way to quantify the spatial correlation of path effects

is to apply the semivariogram model to path terms computed from mixed-effects regression

(Walling and Abrahamson, 2012). The range of values in the best-fitting semivariogram function

denotes the lag distance beyond which path terms are no longer correlated. Meng and Goulet

(2022) first computed the path terms with the mixed-effects regression for CS15.4-1000 and

perform a regression on the semivariogram function with a spherical model (Figure 8.12). The

best-fitting range value, 1.209, was used as the fixed correlation length of δP2P (~xe, ~xs) in
VCM regression. The updated pattern still captures the strongest attenuation within the basins

and much weaker attenuation outside the basins (Figure 8.12). More importantly, the weak

attenuations are constrained at locations with data. This approach is promising for broader

application but would require additional investigation using recorded data.
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Figure 8.11. Maps of differences between input and output δ for the 3D controlled datasetwith the
3D cell approach and shifted hypocenters. Modified from Meng and Goulet (2022).
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Figure 8.12. (a) Semivariogram model of path terms computed by mixed-effects regression for
CS15.4-1000. The red line denotes the best-fitting spherical model. The red dashed
line denotes the range value 1.209 of the best-fittingmodel. (b) Results of β1(~xmp) for
CS15.4-1000 with correlation length fixed at 1.209. Modified from Meng and Goulet
(2022).
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9 A LIST OF NOTATIONS USED IN NON-ERGODIC
GMMS

9.1 ACRONYMS

IP: Intensity parameter

PSA: Pseudo spectral acceleration

FAS: Fourier amplitude spectra

EAS: Effective amplitude spectra

GMM: Ground motion model

VCM: Varying coefficient model

MLE: Maximum likelihood estimation

GP: Gaussian Process

RVT: Random vibration theory

9.2 GMM INPUT VARIABLES

M : Moment magnitude

Rrup: Closest point on rupture-to-site distance

Rx: Horizontal distance from the top of the

rupture measured perpendicular to the

fault strike

Ry0: Horizontal distance off the end of the

rupture measured parallel to strike.

∆~R: Cell-path segments lengths of the

anelastic attenuation cells cells

VS30 Time average shear wave velocity at the

top 30m
FRV : Reverse fault scaling factor

FN : Normal fault scaling factor

fNL: Non-linear site amplification

fHW : Hanging wall scaling

9.3 MODEL PARAMETERS

ci: Ergodic GMM coefficient

ci,x: Non-ergodic GMM coefficient

where x can be:
S for systematic site effects,
P for systematic site effects, or
E for systematic site source

δci,x: Non-ergodic adjustment to GMM

coefficient

~cca,p: Cell specific anelastic attenuation

coefficients

δS2S: Total site-to-site non-ergodic term

δP2P : Total path-to-path non-ergodic term

δL2L: Total Source-to-source non-ergodic term

δBe: Between-event aleatory term

δWes: Within-event aleatory terms

δWSes: Within-event within-site term of a

partially non-ergodic GMM

δB0
e : Between-event term of a non-ergodic

GMM

δWS0
es: Within-event within-site term of a non-

ergodic GMM
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9.4 MODEL HYPERPARAMETERS

`i,x: Correlation length in the kernel function

of ci,x or δci,x
ωi,x: Scale/Standard deviation of the ci,x or

δci,x kernel function
φS2S: Standard deviation of δS2S
φP2P : Standard deviation of δP2P

τL2L: Standard deviation of δL2L
τ : Standard deviation of δBes

φ: Standard deviation of δWe,s

τ0: Standard deviation of δB0
e

φ0: Standard deviation of δWS0
e,s

9.5 OTHER SYMBOLS

y: Response variable of GMM

~x: Array of GMM input variables

(e.g. Rrup, VS30)
ρ: Correlation coefficient
~θ: Array of all GMM parameters

~θhyp: Array of all GMM hyperparameters

κi(~t,~t
′): Kernel function of ci,x or δci,x
tE: Earthquake coordinates

tRup: Coordinates of the closest-point on the

rupture to each site

tS: Site coordinates

tMP : Coordinate of mid-point between

source and site

tC : Cell coordinates

µ(y): Mean estimate of the y ground-motion
parameter

ψ(y): Epistemic uncertainty of y ground-

motion parameter

µ(ci): Mean estimate of ci coefficient
ψ(ci): Epistemic uncertainty of ci coefficient

∗̂: New scenarios in GP predictions (e.g.

t∗E corresponds to location of new

earthquake)

ferg : Median ergodic groundmotion function.

fnerg : Median non-ergodic ground motion

function.
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10 CONCLUDING REMARKS

10.1 SUMMARY

This report presents a summary of different methods, and the associated computer tools, for

the development of non-ergodic GMMs. An emphasis is placed on methods that use GP as it

offers a convenient framework for expressing spatially varying non-ergodic terms. The cell-specific

anelastic attenuation can be combined with GP to model systematic effects related to the path.

A simple example of the steps for developing a non-ergodic GMM using a synthetic dataset and

making predictions at new locations is included in the electronic supplement of the report.

The use of non-ergodic GMMs in PSHA is a promising development, as the reduction in aleatory

variability can significantly impact the seismic hazard at large return periods, and improve

the accuracy of the site-specific hazard. In PSHA applications, the reduction of the aleatory

variability should be combined with the consideration of epistemic uncertainty due to the

uncertainty in the estimates of the non-ergodic terms in addition to the epistemic uncertainty in

the extrapolation to large magnitudes and short distances of the underlying ergodic GMMs. A

higher computational cost is associated with developing and applying non-ergodic GMMs. This

limitation can be overcome by utilizing high-performance computers or efficient approximation

methods. For example, INLA. Rue et al. (2009) provides an efficient method for estimating

the non-ergodic terms and Lacour and Abrahamson (2019) provide an efficient approach for

propagating non-ergodic terms in PSHA.

10.2 ROLE OF NUMERICAL SIMULATIONS

In the numerical simulations comparison, the proposed technique was applied to the CyberShake

dataset. By definition, CyberShake is a non-ergodic model, and the various inputs used for

the simulations are known, making it an ideal testbed for better understanding and testing the

VCM capabilities. It was found that the obtained site effects are consistent with the simulation

datasets. Furthermore, they are consistent in trends with empirical datasets, suggesting they

could be extracted using the VCM and used to improve future non-ergodic GMMs for common

site coverage. The VCM was not able to capture the simulated source effects because the

dense linear distribution of self-similar events in the CyberShake dataset violates the isotropic

assumption required by the Gaussian Process. In this case, one may compute the point-estimate

of the event term instead. For the path effects, both the 2D and 3D cell approaches do not
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recover the anelastic attenuation from the 3D velocity model, mainly because other unmodeled

effects like source radiation pattern and scattering lead to inaccurate estimation for longer

periods. Moreover, CyberShake only has moderate to large magnitude events, the large rupture

planes and surface wave generation lead to rather complicated wave propagation effects. A

more sophisticated representation of wave propagation is necessary to recover the anelastic

attenuation pattern. This finite-fault effect was one of the motivations for the development of

large-scale simulations in the first place. However, the midpoint approach tends to better recover

the attenuation patterns, especially when fixed correlation length is carefully selected, as it does

not make any assumption on the wave propagation path.

This study provides important guidance for future applications of VCM to CyberShake datasets

and other simulation datasets. Due to the large discrepancy in magnitude range and earthquake

density between CyberShake and empirical datasets, the specific issues encountered in the

computation of source and path effects are unlikely to appear for empirical datasets. However,

we expect that the general lessons learned will encourage further verifications from modelers.

Moreover, this study highlighted the shortcomings of GMMs based on empirical datasets with

mostly point sources, which handle large rupture planes and complicated path effects poorly. It

is crucial to develop GMMs based on simulations with large magnitude events, so that GMM can

adequately predict source and path effects from future large earthquakes. Last but not least,

lessons learnt here will help further development of the technique to capture the genuine path

effects for non-ergodic modeling development, both from simulations and as part of GMMs.

10.3 FUTURE STEPS

As larger empirical datasets become available, newnon-ergodic GMMs are anticipated to continue

adding spatially varying non-ergodic terms to capture more systematic site, path, and source

effects.

Numerical simulations can also be used to test the decisions and assumptions associated with

non-ergodic GMM scaling. There is still uncertainty in the repeatability of source effects for a

given region or a single fault. In particular, with the use of small magnitude events to constrain

the non-ergodic terms, the scaling of the non-ergodic source terms from small magnitudes to

larger magnitudes has not been fully validated. The variability due to fault physics complexity

may inherently be irreducible at the time scales we are working with, even in consideration of

fault maturity information, which is quite limited. Similarly, path effects constrained by small

events are theoretically simpler than for large events (waves emitted from different points of

the fault and traversing a large volume to a site where their effect is aggregated). Developments

in three key areas can improve non-ergodic modeling: (a) continued collection of recorded

ground motions to constrain repeatable effects over large areas, (b) numerical simulations to

quantify the differences in path effects of large earthquakes with extended ruptures and small

earthquakes with point source ruptures, and (c) earthquake physics to help with better prediction

of source effects. Future studies should also evaluate the stability of hyperparameters between

different areas to determine if a set of generic hyperparameters can be used. This will allow

the development of non-ergodic GMM for regions with fewer recordings, as larger datasets

are required to estimate the model hyperparameters than non-ergodic terms. Finally, even
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considering their current limitations, non-ergodic GMMs such as those described here have

advantages over ergodic (or global) GMMs in increasing the accuracy of PSHA estimates and are

expected to remain a useful tool to this end.
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A ELECTRONIC SUPPLEMENT

• The project home page is located at:

https://www.risksciences.ucla.edu/nhr3/ngmm

• The web page for the first workshop can be found at:

https://www.risksciences.ucla.edu/nhr3/ngmm-workshop-1

• The web page for the second workshop can be found at:

https://www.risksciences.ucla.edu/nhr3/ngmm-workshop-2

• The software tools for the development of NGMMs can be found at:

https://github.com/NHR3-UCLA/ngmm_tools

• The Docker image for the cross-platform installation of the NGMM tools can be found at:

https://github.com/NHR3-UCLA/docker-ngmm_tools
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