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  ABSTRACT   

Fault displacement models (FDMs) are an essential component of the probabilistic fault 
displacement hazard analyses (PFDHA), much like ground motion models in the probabilistic 
seismic hazard analyses for ground motion hazards. In this study, we develop several principal 
surface FDMs for strike-slip earthquakes. The model development is based on analyses of the new 
and comprehensive fault displacement database developed as part of the Fault Displacement 
Hazard Initiative project led by the University of California, Los Angeles. The main objective of 
our study is to update the FDMs that were developed over a decade ago by the U.S. Geological 
Survey and California Geological Survey, in which a reference trace was drawn manually, FDMs 
are fixed-effect models for lateral displacement, displacement on multiple subparallel ruptures is 
not aggregated, magnitude (M) scaling is linear, and natural logarithm of displacement is assumed 
to be normally distributed. In the current study, the net displacement data for each selected 
earthquake are analyzed in a local coordinate system that tracks a main rupture trace developed 
using a semi-automatic approach based on the Least-Cost Pass analysis. Displacements across 
multiple subparallel principal rupture traces are aggregated at each along-strike measurement 
location. In addition to updating the displacement data, we have included model formulation 
updates such as a bilinear M scaling, random-intercept mixed-effect modeling and M-dependent 
variance of the random intercept, and non-normal probability distribution of the natural logarithm 
of aggregated principal net displacement. Our preferred model assumes a negative exponentially 
modified Gaussian (nEMG) distribution, and it performs well at representing variability in fault 
displacement data. These updates substantially improve data fit and provide reasonable quantile 
predictions, particularly for the upper quantiles of large magnitude ruptures. The nEMG 
distribution affords analytic expressions of probability density function and cumulative 
distribution function, making its implementation in PFDHA straightforward, without resorting to 
numerical integration or stochastic simulation. Furthermore, the stochastic representation of the 
nEMG random variate is interpreted as due to the occurrence of interior tapering in surface slip, 
making it a fitting model statistically as well as physically. Several interim updates assuming 
different probability distributions lead progressively to the final and preferred model. Each of these 
interim models can potentially serve as an alternative FDM in PFDHA to model the epistemic 
uncertainty in the choice of probability distribution. Applications of the updated models are 
demonstrated using PFDHA examples. The steeper slope of the resulting hazard curve from the 
non-normal distribution models, particularly the nEMG model, yield displacement at a low 
exceedance rate that is much smaller than traditional normal-distribution-based models.      

  



 

iv 
 

ACKNOWLEDGMENTS 

Support for this project was provided by California Department of Transportation and California 
Geological Survey (CGS) for staff time and partially by funding awarded to CGS by University of 
California, Los Angeles (UCLA) as part of a larger project funded by California Energy 
Commission.    

The support of these organizations is gratefully appreciated. The opinions, findings, 
conclusions, and recommendations expressed in this publication are those of the authors and do 
not necessarily reflect the views of the study sponsors, the B. John Garrick Risk Institute, or the 
Regents of the University of California. 

The authors benefited from frequent interactions and constructive discussions with other 
researchers, hazard analysts, and practitioners participating in the Fault Displacement Hazard 
Initiative (FDHI) project led by UCLA. We thank Professor Yousef Bozorgnia for initiating and 
leading the FDHI project and for review of this report, Steve Thompson for offering inspiring 
comments and suggestions, Alexandra Sarmiento for help with the FDHI database and review of 
this report, and Yongfei Wong for sharing his simulation results that provided valuable comparison 
and guidance in building magnitude-scaling relation in our models. We are grateful to Donald 
Wells for generously providing his data to help us evaluate the applicable magnitude range of our 
models. We are indebted to Neal (Simon) S. Kwong, Alexandra E. Hatem, Brian R. Shiro, and 
Janet M. Carter of U.S. Geological Survey. Their thorough reviews, constructive comments, and 
effective editing helped to improve the clarity and quality of this report.       

  



 

v 
 

CONTENTS 

ABSTRACT  .......................................................................................................................... iii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

CONTENTS  ........................................................................................................................... v 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES ..................................................................................................................... xviii 

1  Introduction  ........................................................................................................................... 1 

2  Rupture and Displacement Data ................................................................................................. 4 

2.1  FDHI database .................................................................................................................. 4 

2.2  Data selection ................................................................................................................... 6 

2.2.1  Excluded Events and Rationale for Exclusion .......................................................... 7 

2.2.2  Dataset Selection ....................................................................................................... 8 

2.2.3  Excluded Ruptures and Measurements in Selected Datasets .................................... 9 

2.2.4  Modification to FDHI Principal and Distributed Classification ............................. 10 

2.3  Main rupture trace and coordinate system ...................................................................... 11 

2.3.1  Least-Cost Path Analysis ........................................................................................ 13 

2.3.2  LCP as Main Rupture Trace and GC2 as Coordinate System ................................ 13 

2.3.3  Comparison of LCP with ECS ................................................................................ 14 

2.3.4  Significance of LCP as Main Rupture Trace .......................................................... 15 

2.4  Aggregated net principal displacement .......................................................................... 16 

2.4.1  Simple Segmentation Models ................................................................................. 17 

2.4.2  Computation of Aggregated Principal Displacement ............................................. 17 

2.4.3  Comparison of Aggregated and Measured Displacement Profiles ......................... 18 

2.5  Data distribution ............................................................................................................. 18 

3  Development of Probabilistic Distribution Models for Principal Displacement ...................... 31 

3.1  Response variable and its probability distributIon ......................................................... 32 

3.2  Interim updates ............................................................................................................... 33 

3.2.1  Simple Update: Repeating P11 Regression Analysis on Selected FDHI Data ....... 34 

3.2.2  Model1.NO: Mixed-Effect Regression of Tier-1 Data ........................................... 37 

3.2.3  Model2.SN: Distributional Regression Using Skew-Normal Distribution ............. 42 

3.2.4  Model3.ST: Distributional Regression Using Skew-t Distribution ......................... 47 



 

vi 
 

3.3  Model4.nEMG: distribtuional regression using Negative Exponentally Modified 
Gaussian distribution ............................................................................................................ 49 

3.3.1  Stochastic Representation of 𝑙𝑛 𝐷  ........................................................................ 49 

3.3.2  nEMG Distribution ................................................................................................. 50 

3.3.3  Models for  𝜇, 𝜎, and  ............................................................................................ 51 

3.3.4  Variance Model of the Random Intercept of 𝜇 ....................................................... 52 

3.3.5  Diagnostics of Model4.nEMG, Normalized Quantile Residual ............................. 52 

3.3.6  Predictive Distribution ............................................................................................ 52 

3.4  Comparison of interirm and preferred models ............................................................... 53 

3.5  Assessment of estimation uncertainty ............................................................................ 54 

3.5.1  Uncertainty in M-Scaling ........................................................................................ 54 

3.5.2  Uncertainty of Other Coefficients ........................................................................... 57 

3.6  Discussions ..................................................................................................................... 57 

3.6.1  Predicted Profile Shape of D: Vindication of Using Ellipse Equation for 𝑙𝑛 𝐷  ... 57 

3.6.2  Asymmetric Slip Profile ......................................................................................... 58 

3.6.3  Similarity Between Different Stochastic Representations of Displacement ........... 59 

3.6.4  Probability Distribution of D .................................................................................. 65 

3.6.5  Range of Model Applicability ................................................................................ 65 

4  Example Hazard Applications ................................................................................................ 112 

4.1  Numerical implementation for scenario events ............................................................ 112 

4.2  Example applications ................................................................................................... 113 

4.2.1  M 7.0 Scenario Example in Petersen et al. (2011) ................................................ 114 

4.2.2  M 5.8 Scenario Example in IAEA Benchmarking Study ..................................... 114 

4.2.3  Hypothetical M 8.3 Scenario ................................................................................ 115 

4.2.4  Scenario Examples with Model Epistemic Uncertainty ....................................... 116 

4.2.5  Example in IAEA Benchmarking Study with Source Uncertainty ....................... 116 

5  Summary and Future Work .................................................................................................... 126 

5.1  Summary ....................................................................................................................... 126 

5.2  Potential model improvements ..................................................................................... 127 

5.3  Future model development ........................................................................................... 128 

REFERENCES  ....................................................................................................................... 130 

APPENDIX A  Petersen et al. (2011) PFDHA Framework .................................................... 135 

APPENDIX B  Data Selection Tables .................................................................................... 142 

APPENDIX C  Implementation of Probability Distributions ................................................. 147 



 

vii 
 

APPENDIX D  Tier Classification of FDHI Principal Displacement Data ............................ 154 

ELECTRONIC SUPPLEMENTS ............................................................................................... 168 

 

   



 

viii 
 

LIST OF FIGURES 

Figure 2.1.  Geometric parameters used in fault displacement model development and hazard 
analysis (modified from Petersen et al., 2011). Variables l and Δ are utilized to specify 
the along-main-trace and off-main-trace position, respectively, of a point.  Variable L is 
the length of the main trace. Variable s is utilized to track the position of main trace 
along the mapped fault trace. ................................................................................................ 20 

Figure 2.2.  Comparison of least-cost path (LCP) and event coordinate system (ECS) 
reference lines for the 1992 M 7.28 Landers earthquake. (A) View of the entire rupture 
length. (B) Close-up view of a stepover area. ....................................................................... 21 

Figure 2.3.  Comparison of measured displacement from Landers in the coordinate systems 
for least-cost path (LCP) and event coordinate system (ECS). (A) Along-strike 
distribution of principal displacement. (B) Strike-normal distribution of distributed 
displacement. ........................................................................................................................ 22 

Figure 2.4.  Aggregation of principal displacements on subparallel principal rupture traces. 
(A) Map view. (B) Individual and aggregated displacement. ............................................... 23 

Figure 2.5.  Segment and branch number assignment for Landers measurement points. ............ 24 

Figure 2.6.  Aggregation of principal displacement for segment 1 and branch 1.1 of Landers 
surface rupture. (A) Map view with measurement location color-coded by percent 
contribution to the aggregated displacement. (B) Individual and aggregated 
displacement. ........................................................................................................................ 25 

Figure 2.7.  Comparison of along-strike distributions of principal displacement. (A) As-
measurement principal displacement. (B) Aggregated principal displacement. ................... 26 

Figure 2.8.  Epicenter distribution of strike-slip earthquakes in the Fault Displacement 
Hazard Initiative (FDHI) database (Sarmiento et al., 2021), including earthquakes 
selected for model development and those excluded for reasons discussed in Section 
2.2.1. ...................................................................................................................................... 27 

Figure 2.9.  Distribution of displacement measurements plotted with magnitude (M) in 
along-strike distance bins. Each bin is defined by normalized location along the main 
trace (i.e., values of l/L, where L is rupture length and l is distance to the nearest end of 
rupture). Tier-1 and tier-2 data are explained in Section 3.2.2.1 and in Appendix D........... 28 

Figure 2.10.  Distribution of displacement measurements along normalized rupture location 
(l/L) for individual earthquakes. Tier-1 and tier-2 data are explained in Section 3.2.2.1 
and in Appendix D. ............................................................................................................... 29 



 

ix 
 

Figure 2.11.  Histogram of the number of slip measurements (Nslip) for an individual 
earthquake. Out of the 29 strike-slip earthquakes, four have more than 200 
measurements, and all four are of M 7.1 or larger.  These are the 1992 Landers (Nslip = 
566), 1999 Izmit Kocaeli (Nslip  = 263), 2013 Balochistan (Nslip = 247), and 2019 
Ridgecrest mainshock (Nslip = 226)....................................................................................... 30 

Figure 3.1.  Quantiles of fault displacement (D) predicted by the simple update. (A) 
Displacement plotted versus magnitude (M). For comparison, quantiles predicted by the 
original Petersen et al. (2011, P11) elliptical model are plotted as dashed lines. (B) 
Displacement plotted against the normalized positon along the main trace 𝑙2𝐿 . For 
comparison, quantiles predicted by P11 (Petersen et al., 2011) are plotted as dashed 
curves. ................................................................................................................................... 74 

Figure 3.2.  Residual diagnostic plots of the simple update to Petersen et al. (2011). 
Standardized residual 𝜖/𝜎, where 𝜖 = observed ln(D) – predicted mean of ln(D) and 𝜎 = 
standard deviation of 𝜖, is used on this figure. (Top left) residuals versus 𝑙2𝐿 . Variable 
𝑙2𝐿  is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the 

along-main-trace position of the data point, and 𝐿 is the length of the main trace. (Top 
right) residuals versus magnitude (M). (Middle left) histogram of residuals; probability 
density function (PDF) of the normal distribution fitted to the residuals is plotted as the 
red curve. (Middle right) empirical cumulative distribution function (CDF) of residuals; 
CDF of the  normal distribution fitted to the residuals is plotted as the red curve. 
(Bottom left) quantile-quantile (Q-Q) plot that compares the quantiles of standardized 
residuals against the quantiles of standard normal distribution; the solid red line passes 
through the 1st and the 3rd quartiles, and the shaded area denotes roughly the 0.95 
confidence level if residuals are taken from the standard normal distribution. .................... 75 

Figure 3.3.  Data residuals of the simple update to Petersen et al., (2011), plotted versus 
magnitude (M). A residual is color coded according to the earthquake from which it is 
sampled.  Solid triangle marks the mean of residuals in a particular earthquake 𝜀 ̅
 ∑ 𝜀 , where 𝑛  is the number of displacement measurements in earthquake i). The 

blue curve shows the result of a fixed-effect regression of the bilinear M-scaling 
function (function 𝑓  of Equation (3.2)) to all data residuals.  The red curve shows the 
result of a random-intercept mixed-effect regression, in which variation in the mean of 
individual earthquakes is modeled. The striking difference between these two fitted 
curves highlights the importance of proper weighting of individual earthquake afforded 
by the mixed-effect regression. ............................................................................................. 76 

Figure 3.4.  Within-earthquake residuals of the simple update to P11 (Petersen et al., 2011), 
plotted against 𝑙2𝐿 . Variable  𝑙2𝐿  is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) 

of the main trace, 𝑙 is the along-main-trace position of the data point, and 𝐿 is the length 
of the main trace. Within-earthquake residual is approximately computed as (𝜀 𝜀̅  ) 



 

x 
 

where 𝜀̅   is the mean of 𝜀  in earthquake i, as defined in the text and in the caption of 

Figure 3.3. To visualize the variation of mean residual along the main trace, a loess 
smooth to all of the within-earthquake residuals is plotted as the red curve.  A separate 
loess smooth to the tier-1 data residual is shown as the black curve. A comparison of 
these two loess smooths indicates that, relative to the tier-1 smooth, the estimated mean 
is decreased by an average of about 17%, due to the inclusion of tier-2 data. To assess 
its variation along the main trace, residual standard deviation (S.D.) in ten 𝑙2𝐿  bins are 

computed and tag onto the loess smooths. Relative to tier 1’s standard deviation, the 
standard deviation of residuals in an 𝑙2𝐿  bin is increased by an average of about 27% 

along the main trace, due to the inclusion of tier-2 data.  Tier-1 data’s residual standard 
deviation reveals a slight downward trend with 𝑙2𝐿 . An assessment of the 𝑙2𝐿 -

dependence of residual standard deviation for teir-1 data is shown in Figure 3.5. ............... 77 

Figure 3.5.  Within-earthquake residuals of Model1.NO, plotted against 𝑙2𝐿 . Variable 𝑙2𝐿𝑓 

is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the along-
main-trace position of the data point, and 𝐿 is the length of the main trace. Solid red 
symbol marks the standard deviation of residuals in a particular 𝑙2𝐿  bin multiplied by 

1.65.  Bin boundaries are shown as the vertical dotted lines. Exponential function 
𝑒   and linear functions 𝑎  𝑎 𝑙2𝐿  are fitted to the bin standard deivations. 

The fitted exponential and linear functions, mutiplied by 1.65, are shown as the blue and 
the red curves, respectively. .................................................................................................. 78 

Figure 3.6.  Random intercept 𝛿 ,  of Model1.NO, plotted versus magnitude (M). Solid red 
circles mark the standard deviation of  𝛿 ,  in respective magnitude bins bounded by the 

vertical dotted red lines. The horizontal short-dashed line marks the estimated 
𝜎  assuming it is a constant.  The fitted M-dependent 𝜎  model (Euqation (3.4)) is 

written in the top left corner of the figure and shown as the red dashed curve. The 
horizontal long-dashed line indicates the imposed floor level of 𝜎  in the large 

magnitude range. ................................................................................................................... 79 

Figure 3.7.  The 0.05, 0.50, and 0.95 quantiles (the 5th, 50th, and 95th percentiles in the figure 
title) of fault displacement (D) from the compound distribution of Model1.NO. (A) 
Quantiles versus magnitude M. (B) Quantiles versus the normalized position along the 
main 𝑙2𝐿 . Quantiles predicted by P11 (Petersen et al., 2011) are shown as the long-
dashed curves. ....................................................................................................................... 80 

Figure 3.8.  Residual diagnostic plots of Model1.NO. Within-earthquake (EQ) standardized 
residuals are used on this figure. (Top left) residuals versus 𝑙2𝐿 . Variable 𝑙2𝐿  is the 

𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the along-main-
trace position of the data point, and 𝐿 is the length of the main trace. (Top right) 
residuals versus magnitude (M). (Middle left) histogram of residuals; probability density 
function (PDF) of the normal distribution fittted to the residuals is plotted as the red 



 

xi 
 

curve. (Middle right) empirical cumulative distribution function (CDF) of residuals; 
CDF of the normal distribution fitted to the residuals is plotted as the red curve. (Bottom 
left) quantile-quantile (Q-Q) plot that compares the quantiles of standardized residuals 
against the quantiles of standard normal distribution; the solid red line passes through 
the 1st and the 3rd quartiles, and the shaded area denotes roughly the 0.95 confidence 
level if residuals are taken from the standard normal distribution. ....................................... 81 

Figure 3.9.  Estimated random intercept 𝛿 ,  of Model2.SN, plotted versus magnitude (M). 
Solid red circles are the standard deviation of 𝛿 ,  in respective magnitude bins 

bounded by the vertical dotted red lines. The short-dashed line marks the estimated 
𝜎  assuming it is a constant.  The fitted M-dependent 𝜎  model is shown as the red 

dashed curve; the model is also written in the top left of this figure. The long-dashed 
line indicates the imposed floor level of 𝜎 . ....................................................................... 82 

Figure 3.10.  Residual diagnostic plots of Model2.SN. Within-earthquake (EQ) normalized 
quantile residuals are used on this figure. (Top left) residuals versus 𝑙2𝐿 . Variable 𝑙2𝐿  

is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the along-
main-trace position of the data point, and 𝐿 is the length of the main trace. (Top right) 
residuals versus magnitude (M). (Middle left) histogram of residuals; probability density 
function (PDF) of the normal distribution fitted to the residuals is plotted as the red 
curve. (Middle right) empirical cumulative distribution function (CDF) of residuals; 
CDF of the normal distribution fitted to the residuals is plotted as the red curve. (Bottom 
left) qunatile-quantile (Q-Q) plot that compares the quantiles of normalized quantile 
residuals against the quantiles of standard normal distribution; the solid red line passes 
through the 1st and the 3rd quartiles, and the shaded area denotes roughly the 0.95 
confidence level if residuals are taken from the standard normal distribution. .................... 83 

Figure 3.11.  The 0.05, 0.50, and 0.95 quantiles (the 5th, 50th, and 95th percentiles in the 
figure title) of fault displacement (D) from the compound distribution of Model2.SN. 
(A) Quantiles versus magnitude M. (B) Quantiles versus the normalized position along 
the main trace 𝑙2𝐿 . Quantiles predicted by P11 (Petersen et al., 2011) are shown as the 
long-dashed curves. ............................................................................................................... 84 

Figure 3.12.  Estimated random intercept 𝛿 ,  of Model3.ST, plotted versus magnitude (M). 
Solid red circles are the standard deviations of  𝛿 ,   in respective magnitude bins 

bounded by the vertical dotted red lines. The short-dashed line marks the estimated  
𝜎 assuming it is a constant.  The fitted M-dependent 𝜎  model is shown as the red 

dashed curve; the model is also written in the top left of this figure. The long-dashed 
line indicates the imposed floor level of 𝜎 . ....................................................................... 85 

Figure 3.13.  Residual diagnostic plots of Model3.ST. Within-earthquake (EQ) normalized 
quantile residuals are used on this figure. (Top left) residuals versus 𝑙2𝐿 . Variable 𝑙2𝐿  

is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the along-



 

xii 
 

main-trace position of the data point, and 𝐿 is the length of the main trace. (Top right) 
residuals versus magnitude (M). (Middle left) histogram of residuals; probability density 
function (PDF) of the normal distribution fitted to the residuals is plotted as the red 
curve. (Middle right) empirical cumulative distribution function (CDF) of residuals; 
CDF of the normal distribution fitted to the residuals is plotted as the red curve. (Bottom 
left) quantile-quantile (Q-Q) plot that compares the quantiles of normalized quantile 
residuals against the quantiles of standard normal distribution; the solid red line passes 
through the 1st and the 3rd quartiles, and the shaded area denotes roughly the 0.95 
confidence level if residuals are taken from the standard normal distribution. .................... 86 

Figure 3.14.  The 0.05, 0.50, and 0.95 quantiles (the 5th, 50th, and 95th percentiles in the 
figure title) of fault displacement (D) from the compound distribution of Model3.ST. (A) 
Quantiles versus magnitude M. (B) Quantiles versus the normalized position along the 
main trace 𝑙2𝐿 . Quantiles predicted by P11 (Petersen et al., 2011) are shown as the 
long-dashed curves. ............................................................................................................... 87 

Figure 3.15.  Estimated random intercept 𝛿 ,  of Model4.nEMG, plotted versus magnitude 
(M). Solid red circles are the standard deviations of 𝛿 ,  in respective magnitude bins 
bounded by the vertical dotted red lines. The short-dashed line marks the estimated 𝜎  
assuming it is a constant.  The fitted M-dependent 𝜎  model is shown as the red dashed 

curve; the model is also written in the top left of this figure. The long-dashed line 
indicates the imposed floor level of 𝜎 . .............................................................................. 88 

Figure 3.16.  Residual diagnostic plots of Model4.nEMG. Within-earthquake (EQ) 
normalized quantile residuals are used on this figure. (Top left) residuals versus 𝑙2𝐿 . 

(Top right) residuals versus magnitude M. (Middle left) histogram of residuals; 
probability density function (PDF) of the normal distribution fitted to the residuals is 
plotted as the red curve. (Middle right) empirical cumulative distribution function 
(CDF) of residuals; CDF of the normal distribution fitted to the residuals is plotted as 
the red curve. (Bottom left) quantile-quantile (Q-Q) plot that compares the quantiles of 
normalized quantile residuals against the quantiles of standard normal distribution; the 
solid red line passes through the 1st and the 3rd quartiles, and the shaded area denotes 
roughly the 0.95 confidence level if residuals are taken from the standard normal 
distribution. ........................................................................................................................... 89 

Figure 3.17.  The 0.05, 0.50, and 0.95 quantiles (the 5th, 50th, and 95th percentiles in the 
figure title) of fault displacement (D) from the compound distribution of Model4.nEMG. 
(A) Quantiles versus magnitude M. (B) Quantiles versus normalized position along the 
main trace 𝑙2𝐿 . For comparison, quantiles predicted by P11 (Petersen et al., 2011) are 
shown as the long-dashed curves. ......................................................................................... 90 

Figure 3.18.  Comparison of compound distributions of fault displacement (D) from the 
models summarized in Table 3.1 and from Petersen et al. (2011) (P11). (Left) 



 

xiii 
 

probability density functions (PDFs). (Right) cumulative distribution functions (CDFs) 
Calculations are carried out for ruptures of four different magnitudes (M), all at the 
same normalized position of 𝑙2𝐿 = 0.2. ................................................................................ 91 

Figure 3.19.  Comparison of the 0.05 (Q05), 0.50 (Q50), and 0.95 (Q95) quantiles of fault 
displacement (D) from the compound distributions of models summarized in Table 3.1 
and from the Petersen et al. (2011) (P11). The rupture magnitude (M) and the site’s 
normalized position (𝑙2𝐿) are indicated in the panel title. .................................................... 92 

Figure 3.20.  Quantiles of compound distribution of fault displacement (D) from the models 
summarized in Table 3.1 and from Petersen et al. (2011) (P11), plotted against 
magnitude (M).  Each panel is conditional on the quantile (Q05, Q50, and Q95 for the 
0.05-quantile, 0.5-quantile, and 0.95-quantile, respectively) and the normalized position 
along the main trace (𝑙2𝐿 = 0, 0.2, and 0.5) as indicated in the strip of each panel. ............ 94 

Figure 3.21.  Magnitude (M)-scaling relations of fault displacement models (FDMs) 
regressed using an 𝑚   fixed to one of the five different values indicated in the plot 
legend. These 𝑚   values are marked in this figure by the color-coded vertical lines. For 
use as a reference for model comparion, the earthquake term (𝑐 𝑐 , ) obtained from a 

regression analysis of an exploratory FDM without the magnitude scaling term 𝑓  are 
plotted as the solid squares. Note that the five FDMs shown on this figure are based on 
the 𝑙𝑛 𝐷  data, not on the 𝑐 𝑐 ,   values from the exploratory FDM. ....................... 95 

Figure 3.22.  Quantiles of compound distributions of fault displacement (D) from the four 
models listed in Table 3.6, plotted versus magnitude (M). The fixed 𝑚  value used in 
each model is indicated in the figure legend.  For reference, the quantiles from the 
model assuming 𝑚  = 7.45 are shown as the gray dashed curves. Each panel is 
conditional on the quantile (Q05, Q50, and Q95 for the 0.05-quantile, 0.5-quantile, and 
0.95-quantile, respectively) and the normalized position along the main trace (𝑙2𝐿 = 0, 
0.2, and 0.5) as indicated in the strip of each panel. ............................................................. 96 

Figure 3.23.  Profile of median slip predicted by Model4.nEMG for magnitude (M) 7.5 The 
predicted median is fitted by three functions of 𝑙2𝐿 used in previous studies to 
characterize slip profile along the main trace.  The fitted curves are shown as dashed 
curves in red, magenta, and orange color for the symmetric isosceles trapezoid, 
hyperbolic tangent (tanh) function, and ellipse equation, respectively. ............................... 97 

Figure 3.24.  Plots of normalized quantile residuals from Model4.nEMG. (Top) The 
horizontal coordinate is the original normalized distance 𝑙2𝐿 measured relative to the 
western end point of main trace. (Bottom) The horizontal coordinate is the normalized 
distance 𝑙2𝐿 after left-skewed profiles are reflected. A linear function of 𝑙2𝐿 is fitted to 
the residuals in each panel and the fitted curves are shown as the dashed lines. .................. 98 



 

xiv 
 

Figure 3.25.  Predicted quantiles of displacement (D) versus normalized position along the 
main trace (𝑙2𝐿), for a magnitude (M) 7.5 rupture. Black curves are computed from 
Mode4.nEMG, a spatially symmetric model. Red curves are computed from the spatially 
asymmetric Model6.nEMG. Note that the peak of predicted quantile from 
Model6.nEMG occurs near 𝑙2𝐿 = 0.4. .................................................................................. 99 

Figure 3.26.  The average (𝐷 ) and the maximum (𝐷 ) of observed displacements for 
each strike-slip earthquake selected from the Fault Displacement Hazard Initiative 
(FDHI) database, plotted against magnitude (M). The fits by the bilinear function of M 
(Equations (3.23) and (3.24)) are shown as the red curve and the black curve for 𝐷  
and 𝐷 , respectively. For reference, the M-scaling relation  𝑐 𝑓   of 
Model4.nEMG is shown as the blue curve. ......................................................................... 100 

Figure 3.27.  Logarithm of the ratio  𝐷 /𝐷 , plotted against magnitude (M). The 
average (𝐷 ) and the maximum 𝐷  of observed displacements in an individual 
earthquake are obtained from two data sources. The blue circles are from the Fault 
Displacement Hazard Initiative (FDHI) database (Sarmiento et al., 2021), and the red 
circles are from Wells and Coppersmith (1994).  The average value of 𝑙𝑛 𝐷 /𝐷  
from each dataset is marked by the horizontal dashed line................................................. 101 

Figure 3.28.  (left) Logarithm of observed maximum dispalcement (𝑙𝑛 𝐷  versus the 
magnitude-scaling term 𝛿 , 𝑐 𝑓  of Model4.nEMG. (right) Logarithm of 
observed avearge dispalcement  𝑙𝑛 𝐷  versus 𝛿 , 𝑐 𝑓   of Model4.nEMG. 
Both 𝑙𝑛 𝐷  and 𝑙𝑛 𝐷  have a 1:1 relation with the 𝛿 , 𝑐 𝑓  term. The 

standard deviation of the scatter around the 1:1 line is 0.2548 and 0.2353 for 𝑙𝑛 𝐷  
and 𝑙𝑛 𝐷 , respectively. ................................................................................................. 102 

Figure 3.29.  Predicted probability density function (PDF) of fault displacement (D) versus 
the normalized position along the main trace (𝑙2𝐿) of amagnitude (M) 7.2 rupture. The 
predicted PDF conditional on zero random intercept (𝛿 ,   = 0) is shown by the gray 

curve. The predicted mean of the Gaussian component (𝜇  (magenta square) falls 
between the predicted 90th and 95th percentiles of displacements. The predicted mean 
displacement (𝜇 -  , where  is the mean of the Exponential component) (blue square) 
falls below the 50th percentile, as expcted for a left-skewed distribution. For reference, 
the PDF of the compound distribution resulting from the marginalization over 𝛿  is 

shown as the red curve. ....................................................................................................... 103 

Figure 3.30.  Simulated exeedence probablty of sample maximum, plotted against sample 
size. Samples are taken from the predicted nEMG distribution for magnitude (M  7.3 at 
the normalized along-trace location of 𝑙2𝐿 = 0.5, for eight different sample sizes. To 
account for sampling variability, sampling is repeated 100 times for each sample size. 
The red solid square marks the mean of exceedence probability over these 100 trials. 
(Inset) Histogram of the sample size of displacements, per earthquake, in Fault 



 

xv 
 

Displacement Hazard Initiative (FDHI) database that fall within a 1-km-wide spatial 
window centered at the location of observed maximum displacement (𝐷 . ................. 104 

Figure 3.31.  Matching the logarithm of Weibull-distributed ratio of displacement (D) to 
average displacement 𝐷 , 𝐷/𝐷 , by the negative exponentially modified Gaussian 
(nEMG) distribution. (Left) Histogram of the logarithm of 𝐷/𝐷  sampled from a 
Weibull distribution whose parameters, as shown in the panel title, are predicted by the 
𝐷/𝐷  model of Moss and Ross (2011; MR11). The density function of the matched 
nEMG distribution is shown as the red curve. Parameters of the matched nEMG 
distribution are given in the plot legend. (Right) Quantile-quantile plot that compares 
quantiles of the logarithm of sampled 𝐷/𝐷  versus the theoretical quantile of the 
matched nEMG distribution. ............................................................................................... 105 

Figure 3.32.  Matching the logarithm of gamma-distributed ratio of displacement (D) to 
average displacement (𝐷 , 𝐷/𝐷 , by the negative exponentially modified Gaussian 
(nEMG) distribution. (Left) Histogram of the logarithm of 𝐷/𝐷  sampled from a 
gamma distribution whose parameters, as shown in the panel title, are predicted by the 
𝐷/𝐷  model of Moss and Ross (2011; MR11). The density function of the matched 
nEMG distribution is shown as the red curve. Parameters of the matched nEMG 
distribution are given in the plot legend. (Right) Quantile-quantile plot that compares 
quantiles of the logarithm of sampled 𝐷/𝐷  versus the theoretical quantile of the 
matched nEMG distribution. ............................................................................................... 106 

Figure 3.33.  Matching the logarithm of beta-distributed ratio of displacement (D) to average 
displacement (𝐷 , 𝐷/𝐷 , by the negative exponentially modified Gaussian 
(nEMG) distribution. (Left) Histogram of the logarithm of 𝐷/𝐷  sampled from a beta 
distribution whose parameters, as shown in the panel title, are predicted by the 𝐷/𝐷  
model of Moss and Ross (2011; MR11). The density function of the matched nEMG 
distribution is shown as the red curve. Parameters of the matched nEMG distribution are 
given in the plot legend. (Right) Quantile-quantile plot that compares quantiles of the 
logarithm of sampled 𝐷/𝐷  versus the theoretical quantile of the matched nEMG 
distribution. ......................................................................................................................... 107 

Figure 3.34.  Matching the logarithm of gamma-distributed ratio of displacement (D) to 
maximum displacement (𝐷 , 𝐷/𝐷  by the negative exponentially modified 
Gaussian (nEMG) distribution. (Left) Histogram of the logarithm of 𝐷/𝐷  sampled 
from a gamma distribution whose parameters, as shown in the panel title, are predicted 
by the 𝐷/𝐷  model of Moss et al. (2022; MEA22). The density function of the 
matched nEMG distribution is shown as the red curve. Parameters of the matched 
nEMG distribution are given in the plot legend. (Right) Quantile-quantile plot that 
compares quantiles of the logarithm of sampled 𝐷/𝐷  versus the theoretical quantile 
of the matched nEMG distribution. .................................................................................... 108 



 

xvi 
 

Figure 3.35.  Scatter plots of observed average displacement (𝐷   versus magnitude (M). 
(Top left) data from Wells and Coppersmith (1994; WC94); (Top right) data from Wells 
and Youngs (2015; WY15); all styles of faulting (SOF); (Bottom left) data from 
Anderson et al. (2021; AEL21); (Bottom right) Fault Displacement Hazard Initiative 
(FDHI) database (Sarmiento et al., 2021) used in this study. A loess smooth is 
calculated and plotted as solid black curve in each panel. For reference, three parametric 
models fitted to the datasets of WC94, FDHI, and AEL21 are shown as dashed curves in 
black, red, and blue color, respectively. .............................................................................. 109 

Figure 3.36.  Data residuals with respect to the 𝐷  - magnitude (M) relation of Equation 
(3.23) developed using the average displacement (𝐷  data from the Fault 
Displacement Hazard Initiative (FDHI) database (Sarmiento et al., 2021). To help 
visualize the residual trend, the smooth curve fitted by the nonparametric, locally 
weighted (loess) regression on the data residuals is shown as the dashed curve. ............... 110 

Figure 3.37.  The magnitude-scaling terms ( 𝑐 𝑓 ) from Model4.nEMG and its three 
epistemic variants, all vertically shifted by 0.7642 log units, are plotted against 
magnitude (M). For comparison, average displacement (𝐷  data from four different 
data sources (Wells and Coppersmith (1994; WC94); Wells and Youngs (2015; WY15); 
Anderson et al. (2021; AEL21) and Fault Displacement Hazard Initiative (FDHI) 
database (Sarmiento et al., 2021)) are plotted in four separate panels as the solid gray 
symbols. WY15 data include strike-slip as well as other styles of faulting (SOF)............. 111 

Figure 4.1.  Comparison of hazard curves for the magnitude (M) 7.0 scenario earthquake 
using the preferred negative exponentially modified Gaussian (nEMG) model 
(Model4.nEMG), the Petersen et al. (2011) bilinear model (P11 Bilinear), and two 
interim models (Model1.NO and Model2.SN). P[sr≠ 0|m] is the probability of having 
surface rupture (i.e., sr ≠ 0) given that a magnitude m earthquake occurs. ........................ 119 

Figure 4.2.  Comparison of hazard curves for the M 5.8 scenario earthquake using the 
preferred negative exponentially modified Gaussian (nEMG) model, the Petersen et al. 
(2011) bilinear model (P11 Bilinear), and two interim models (Model1.NO and 
Model2.SN). ........................................................................................................................ 120 

Figure 4.3.  Comparison of hazard curves for the hypothetical magnitude (M) 8.3 scenario 
using the preferred negative exponentially modified Gaussian (nEMG) model, the 
Petersen et al. (2011) bilinear model (P11 Bilinear), and two interim models 
(Model1.NO and Model2.SN). ............................................................................................ 121 

Figure 4.4.  Hazard curves showing effects of alternative m3 values in models using negative 
exponentially modified Gaussian (nEMG) distribution. (A) Magnitude (M) 7.0 scenario 
in Petersen et al. (2011). (B) M 5.8 scenario example in International Atomic Energy 
Agency (IAEA) benchmarking study (Valentini et al., 2021). (C) Hypothetical M 8.3 
scenario. .............................................................................................................................. 122 



 

xvii 
 

Figure 4.5.  Hazard curves showing effects of alternative assumptions for along-strike slip 
distribution using the magnitude (M) 7.0 scenario as an example. (A) l/L = 0.5. (B) l/L = 
0.4. (C) l/L = 0.3. (D) l/L = 0.1. Variable l is the along-main-trace position and L is the 
length of the main trace (see Figure 2.1). ........................................................................... 123 

Figure 4.6.  Example in the International Atomic Energy Agency (IAEA) benchmarking 
study with source model logic tree (modified from Valentini et al., 2021). (A) Three 
segments of the Fudagawa fault zone. (B) Rupture scenarios. (C) Source logic tree with 
epistemic uncertainty in magnitude and event rate. M is earthquake magnitude; l is the 
along-main-trace position, and L is the length of the main trace (see Figure 2.1). ............. 124 

Figure 4.7.  Comparison of Petersen et al. (2011; P11) bilinear and negative exponentially 
modified Gaussian (nEMG) hazard curves for a site on the Fudagawa fault zone in 
Japan. Calculated mean hazard curve is the sum of weighted mean of all scenario 
curves. (A) Mean and percentile hazard curves. (B) Scenario and total hazard curves. M 
is earthquake magnitude. .................................................................................................... 125 

Figure A.1.  Illustration of the Petersen et al. (2011) and Chen and Petersen (2019) 
probabilistic fault displacement hazard analysis framework, component models, and 
data needed to develop empirical formula of each component model. ............................... 141 

Figure D.1.  An example of tier classification of the Landers principal net displacement (D, 
in units of meters) from the preferred data source PT_DS_ID = 6, using the 2-parameter 
ellipse functional form.  The estimated 0.997 and 0.5 quantiles are shown as the orange 
and red curves, respectively. The estimated 0.003 quantile of the hypothetical normal 
distribution is shown as the thick red curve, while the lower-bound of tier-1 
displacements is shown as the thick black curve. The identified tier-2 displacements are 
marked by a small solid square inside an open square.  Displacements from the same 
rupture segment are marked by the same color.  For comparisons, the 0.15 and the 0.1 
quantiles are shown as the cyan and the blue dashed lines, respectively............................ 158 

Figure D.2.  Tier classification of principal net displacement (D) obtained using each of the 
eight alternative functional form of  𝑓 𝑙2𝐿 : (A) Elliptical. (B) Elliptical plus Linear. 
(C) Quadratic. (D) Cubic. (E) Modified Beta. (F) B-Spline, degrees of freedom (df) = 3. 
(G) B-Spline df = 5. (H) B-Spline df = 7. Earthquake name, magnitude (M), and 
preferred FDHI data source identification (DS) are indicated inside each panel title strip. 159 

Figure D.3.  Single final tier classification of a data point. Earthquake name, magnitude (M), 
and preferred FDHI data source identification (DS) are indicated inside the panel title 
strip. Indicator variable 𝑓𝑙𝑎𝑔  is equal to 1 if the data point of interest is classified as tier 
2 by the i-th functional form, otherwise 𝑓𝑙𝑎𝑔𝑖 = 0. The sum  ∑ 𝑓𝑙𝑎𝑔   is the number 
of times a data point is classified as tier 2. A data point is assigned a final classification 
of tier-2 if  ∑ 𝑓𝑙𝑎𝑔 𝑟𝑒𝑐𝑜𝑚; that is, it is classified as tier 2 more than recom 
times.  The criterion recom is earthquake specific and given inside each panel. ............... 167 



 

xviii 
 

 

LIST OF TABLES 

Table 3.1.  Coefficients of Interim Updates and Preferred Model. .............................................. 68 

Table 3.2.  Distribution Parameters and Percentiles Predicted by Model1.NO ........................... 69 

Table 3.3.  Distribution Parameters and Percentiles Predicted by Model2.SN ............................ 70 

Table 3.4.  Distribution Parameters and Percentiles Predicted by Model3.ST ............................. 71 

Table 3.5.  Distribution Parameters and Percentiles Predicted by Model4.nEMG ...................... 72 

Table 3.6.  Coefficients of nEMG Distributional Models, Conditional on Different 
Credible m3 ............................................................................................................................ 73 

Table B.1.  Strike-slip events in the Fault Displacement Hazard Initiative (FDHI) database ... 143 

Table B.2.  Rupture dataset selection and rationale ................................................................... 144 

Table B.3.  Explanation of data quality indices in the Fault Displacement Hazard Initiative 
(FDHI) database (October 2020 release) and usage recommendation (slightly 
simplified)1 .......................................................................................................................... 145 

Table B.4.  Measurement dataset selection and rationale .......................................................... 146 

 



 

1 

1 Introduction 

Probabilistic fault displacement hazard analysis (PFDHA) is a quantitative assessment of hazards 
associated with potential surface ruptures from future earthquakes. It was first developed by 
Youngs et al. (2003) to assess hazards from the numerous normal active faults that affect the site 
of the proposed repository for high-level nuclear wastes at Yucca Mountain, Nevada. They 
developed two PFDHA approaches: an earthquake approach and a displacement approach. They 
also established probability distributions appropriate for normal faults in an extensional tectonic 
environment.  

The earthquake approach for PFDHA is similar to the well-established probabilistic 
seismic hazard analysis (PSHA) for ground motion hazards. It is often viewed as PSHA with 
ground motion models replaced by fault displacement models (FDMs) that characterize how the 
amplitude of fault displacement varies along an earthquake’s rupture trace and how it attenuates 
away from the surface rupture. The earthquake approach, therefore, can take advantage of the best 
available scientific models in source characterization developed for PSHA. PFDHA, however, 
demands much higher precision in fault location and needs to take into consideration greater details 
in fault geometric complexity (Petersen et al., 2011, hereafter P11; Chen and Petersen, 2011; Chen 
et al., 2013). Another important aspect of PFDHA that distinguishes it from PSHA is that PFDHA 
requires additional probability models to account for the probability of occurrence of surface 
ruptures because not all earthquakes produce surface rupture and, for earthquakes that do produce 
surface ruptures, surface ruptures do not occur everywhere near or along the earthquake fault. 

The displacement approach relies on establishing statistical characteristics of site-specific 
displacements and models for recurrence of displacement events. It treats each surface rupture 
event as an independent event without reference to the causative earthquake. It is computationally 
and conceptually simpler than the earthquake approach but requires sufficient site-specific 
displacement measurements and occurrence times to establish statistical models.  

Since the work of Youngs et al. (2003), the PFDHA methodology has been improved and 
its applicability extended to broader tectonic environments through the work of P11, Moss and 
Ross (2011), Takao et al. (2013), and Nurminen et al. (2020). The P11 work is a collaborative 
effort between the U.S. Geological Survey (USGS) and California Geological Survey (CGS) that 
extended the Youngs et al. (2003) approach to strike-slip faults and to account for fault trace 
mapping accuracy, fault complexity, and footprint size of building/engineered structures. The P11 
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PFDHA framework and hazard equations are summarized in Appendix A of this report. Using the 
P11 approach, advances were made to create fault displacement hazard maps (Figure 11 in P11; 
and Figure 8 in Chen and Petersen, 2011). These maps are similar to seismic hazard maps for 
ground motion, such as seismic hazard maps in Petersen et al. (2020). Fault displacement hazard 
maps may supplement the regulatory Alquist-Priolo Earthquake Fault Zone maps 
(https://www.conservation.ca.gov/cgs/alquist-priolo) produced by CGS for more efficient 
mitigation of risk associated with surface displacement hazards where avoidance of active faults 
is not feasible, such as with pipelines and transportation corridors. They may also supplement 
ground motion hazard maps for quantifying overall hazards from earthquakes in the vicinity of 
active faults.  

In recent years, PFDHA has been used increasingly to assess displacement hazards for 
lifeline systems, nuclear power plants, and other critical structures (AMEC Geomatrix, 2010; U.S. 
Nuclear Regulatory Commission, 2012; Takao et al., 2013; Japan Nuclear Safety Institute, 2013; 
Rizzo, 2013a, b). Comprehensive assessment of fault displacement hazards is particularly 
important for the resilience and recovery of large population centers in California (such as Los 
Angeles metropolitan area and San Francisco Bay Area) and similar places around the world, 
where water, natural gas, electricity, and other vital supplies depend on engineered systems that 
cross large active faults. The American Nuclear Society (2015) published American National 
Standard Criteria for assessing tectonic surface fault rupture and deformation at nuclear facilities. 
The International Atomic Energy Agency (IAEA) requires its Member States to conduct 
probabilistic evaluations of surface faulting for nuclear installations (IAEA, 2016). The IAEA 
recently published a technical document (TECDOC) reviewing the state of practice in PFDHA 
(IAEA, 2021) and is in the process of preparing a second TECDOC providing detailed guidance 
to its Member States on PFDHA through a benchmarking study (Valentini et al., 2021).  

However, PFDHA still relies on the few aforementioned published FDMs: Youngs et al. 
(2003) for normal faults, P11 for strike-slip faults, and Moss and Ross (2011) for reverse faults.  
These FDMs were developed using older datasets that are typically sparsely populated along the 
rupture trace and from a limited number of surface rupturing earthquakes prior to year 2000.  

Recognizing the need to develop surface rupture and fault displacement data in a consistent 
manner to improve empirical models and advance PFDHA, an international effort was initiated to 
construct a worldwide and unified surface displacement database, the SURE (SUrface Rupture of 
Earthquakes) database (Baize et al., 2020).  

Started in 2018, a comprehensive database building effort was initiated as part of the fault 
displacement hazard initiative (FDHI) project let by Professor Yousef Bozorgnia at University of 
California, Los Angeles (Bozorgnia et al., 2021). The FDHI database includes global surface 
rupturing historical earthquakes of all faulting styles (Sarmiento et al., 2021). It contains 
displacement measurements whose observation locations are defined by geographic coordinates. 
It also contains georeferenced surface rupture traces, defined by geographic coordinates of 
vertices, and also given as polyline features in ArcGIS shapefile format. Another important 
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component of the FDHI research project is a collaborative community effort to develop new FDMs 
by multiple modeling teams. The authors of this report constitute one of the teams participating in 
this effort.  

Our overall goal is to use the new FDHI database to improve empirical FDMs in P11. An 
overarching objective is to improve the FDMs for principal displacement (i.e., displacement 
associated with principal ruptures).   

This report documents teamwork carried out since 2019 to improve the FDMs for principal 
displacement. It consists of three main chapters. Chapter 2 describes selection of principal 
displacement data, establishment of a reference coordinate system, and data preparation. Chapter 
3 presents model development, including choices of functional forms, regression analysis methods 
and results, and model evaluation and comparison. Chapter 4 presents the outcomes of example 
applications of the improved FDMs in the PFDHA framework of P11.  

As described in Appendix A, FDMs constitute one component of the P11 PFDHA 
framework. They are needed in the calculation of the conditional exceedance probability of 
displacement, i.e., the P[D≥D0|l/L,m,D≠0] term in Figure A.1 and in Equation (A.1). Other 
components in the P11 framework are not updated. These include distributed displacement model, 
models for surface rupture probability, and location uncertainty. The FDHI database can be used 
to update some of these models in the future. It does not contain data needed to define conditional 
probability of surface rupture given magnitude.     

Our analysis is limited to fault displacement measured on discrete rupture from strike-slip 
events. Continuous deformation between discrete ruptures is not accounted for. We note that 
discrete displacement accounts for only a portion of the total deformation across earthquake faults. 
A substantial amount of continuous deformation can occur (Milliner et al. 2015, 2016) and can be 
damaging to structures built across the deformation zone. A parallel study led by Milliner et al. 
(2020) is ongoing. That study processes and develops geodetic data, establishes component 
models, and formulates methods suitable for hazard analysis of total displacement.   
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2 Rupture and Displacement Data 

We selected mapped surface ruptures and displacement measurement data from the October 2020 
release of the FDHI database (Sarmiento et al., 2021), supplemented by three strike-slip events 
added to the FDHI database in July 2022. Data selection is discussed in this chapter. Selected data 
are documented in the electronic supplements. This chapter also discusses the development of a 
piecewise continuous main rupture trace as the along-strike reference trace (the main trace), with 
respect to which the coordinate system is defined and principal displacements across multiple 
subparallel principal rupture traces are aggregated. Developing a reference trace and aggregating 
displacement are two challenging, yet necessary steps in data preparation for model development. 
These data processing procedures resulted in several additional attribute fields, which are included 
and described in the electronic supplements.     

2.1 FDHI DATABASE 

The FDHI database includes two main data tables: high resolution surface rupture traces and 
displacement values at measurement points. Both rupture traces and displacement measurement 
locations are georeferenced. Surface ruptures are defined by geographic coordinates of vertices in 
a flatfile (in comma-separated values file format) and as polyline features in the ArcGIS shapefile 
format. For some events, data are from multiple sources for displacement measurements and/or 
rupture traces. In this report, we refer data from a specific source as a dataset. Multiple 
measurement datasets and rupture datasets are available for some events. 

In addition to geographic coordinates, the FDHI database also provides strike-parallel (u) 
and strike-normal (t) coordinates for measurement points and rupture trace vertices in an event-
specific, local coordinate system (ECS) in which the ECS is the second generalized coordinate 
system (GC2) (Spudich and Chiou, 2015) relative to a smooth along-strike reference curve. The 
ECS reference curve is developed as a geometry center line of all displacement measurement 
points and rupture trace vertices, with displacement points weighted higher in accordance with the 
value of measured net displacement. Details of the ECS can be found in Section 4.5 of the database 
report (Sarmiento et al., 2021). ECS is used as the along-strike reference trace by most FDHI 
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model development teams. Our team used a least-cost path (LCP) analysis method (see Section 
2.3) to determine a main rupture trace from mapped surface ruptures and use it as the reference 
trace for reasons summarized in Section 2.3.4.   

The October 2020 release of the FDHI database contains rupture and displacement data for 
66 global earthquakes. Among them, 31 are strike-slip events. Four strike-slip events were added 
to the FDHI database as part of its July 2022 update. The update brings the total number of strike-
slip events to 35. The geographic distribution of epicenters of all original FDHI events are shown 
on Figure 1.1 of the database report (Sarmiento et al. 2021).    

 Displacement measurements in the FDHI database are given as vector components as well 
as net displacement at each measurement location. Net displacement is the vector sum of fault 
parallel slip, fault-normal slip, and vertical slip or scarp height. The FDHI project recommends 
model development teams to analyze and develop FDMs for net slip. Therefore, in addition to 
limiting our current study to strike-slip events, we also limit the displacement parameter to the net 
slip given in the FDHI database. See Figure 2.10 in Sarmiento et al. (2021) for definitions of slip 
components.  

 In published PFDHA frameworks (e.g., Youngs et al., 2003; P11), surface ruptures and 
displacements were classified into principal and distributed categories, and the two categories were 
analyzed separately. Following these studies and per request from model development teams, the 
FDHI database team classified each mapped surface rupture into either principal or distributed 
categories based on geological interpretations and following the definitions given in Youngs et al. 
(2003) and in P11. Specific criteria are discussed in Section 4.3 of the database report (Sarmiento 
et al., 2021). Measurement points are associated with surface ruptures and, for measurements on 
individual discrete ruptures (i.e., offset of piecing points on two sides of a rupture, see Figure 2.12 
in Sarmiento et al., 2021), they are also classified into either principal or distributed categories. 
However, some measurements in the FDHI database are not on individual ruptures; they reflect 
displacement accumulated over an aperture of some finite width or over the entire deformation 
zone. Therefore, two additional categories are included in displacement measurements. They are 
the total displacement and cumulative displacement. Total displacement is differential 
displacement across the entire rupture zone, usually calculated from geodetic measurements. 
Cumulative displacement is displacement summed across a limited width of the rupture zone 
across the main rupture. Both total and cumulative displacement may include principal 
displacement, distributed displacement, and continuous deformation in between discrete ruptures. 
Detailed description for each is given in Section 4.3 and Table 4.2 of the database report 
(Sarmiento et al., 2021). 

We decided to sum up principal net displacements across multiple subparallel principal 
ruptures for use in FDM as the response variable.  The method used to aggregate principal 
displacement is discussed in Section 2.5 of this report. Most other FDHI model development teams 
also aggregate displacement. However, aggregation methods vary, and some teams aggregate not 
only principal displacement but also distributed displacement (e.g., Kuehn et al., 2022).    
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Locations of mapped ruptures in the ArcGIS polyline format are used to construct an along-
strike reference trace for each event, which we refer to as the main rupture trace. The construction 
of the main trace using the least-cost-path analysis is described in Section 2.3. The main rupture 
trace has two main utilities in our data preparation: 

 It is utilized as the reference trace in the calculation of GC2 coordinate for each 
measurement point. The u-coordinate is treated as the along-main-trace distance 𝑙 
for FDM development. We prefer this coordinate over the u-coordinate of ECS for 
reasons discussed in Section 2.3.3 and 2.3.4.  

 It is utilized as the reference trace in aggregating the principal net displacement 
across multiple subparallel principal ruptures (Section 2.4).  

2.2 DATA SELECTION 

As stated earlier, we focus our study on strike-slip events and exclude all events with other faulting 
styles, including normal-oblique and reverse-oblique. There are two main motivations for this 
decision: (1) our main objective is to improve the displacement models in P11 that were developed 
for strike-slip events; and (2) previous studies have focused on events with a specific faulting style 
[i.e., Youngs et al. (2003) on normal faulting events, Moss and Ross (2011) on reverse faulting 
events, and P11 on strike-slip events] because events with different faulting styles behave 
differently. Normal-oblique events are excluded because whether they behave more like normal 
events or more like strike-slip events is unclear. For the same reason, reverse-oblique events are 
excluded.  

Because we limit our analysis to net displacement derived from slip components measured 
on individual ruptures, we do not analyze displacement measurements classified as total or 
cumulative in the FDHI database except for a couple of events as discussed in Section 2.2.1. We 
further restrict our analysis to principal displacement only, because principal and distributed 
displacement have distinctly different characteristics.     

Not all principal displacement data from strike-slip events in the FDHI database are used 
in our statistical analysis for various reasons. In some cases, data from the entire event are 
excluded. In other cases, certain measurements in the selected events are excluded. Reasons for 
exclusion vary from event to event, but in general, affected events are those with the following: 
(1) no principal displacement measurements; (2) the spatial extent of rupture mapping is 
incomplete relative to the spatial extent of the known surface rupture; (3) ruptures and 
measurements from aftershocks; or (4) few good quality displacement measurements or 
measurements that have poor spatial coverage. Also, we do not mix data from different sources 
for a given event. Therefore, for events with multiple rupture or measurement datasets, only one 
rupture data source and one measurement data source are selected.           
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2.2.1 Excluded Events and Rationale for Exclusion 

The 35 strike-slip events in the FDHI database are listed in Table B.1 of Appendix B, in which 
earthquake names are those given as an attribute in the FDHI database. These names are used 
throughout this report. We excluded six events in our data analysis for model development:  
GalwayLake, HomesteadValley, Hualien, IzuOshima, IzuPenisula, and Pisayambo. The remaining 
29 events occurred between 1953 and 2019, with magnitude ranging from 6.00 to 7.90. Thirteen 
of the 29 events (≈ 45%) occurred in California.  

Darfield and Imperial1940 were excluded initially because all their displacement 
measurements are classified as cumulative. The FDHI database team indicated that the cumulative 
displacement for these events is comparable to the aggregated principal displacement. For 
Imperial1940, displacement measurements are classified as cumulative because principal slips on 
individual subparallel principal ruptures were added. For Darfield, the cumulative slip is also 
mainly from principal ruptures even though it may contain warping within about 20 m (Alexandra 
Sarmiento, UCLA, email communication, 2022). Because these data appear comparable with 
aggregated principal displacement that we model (see Section 2.4), we decided to bring these two 
events back to augment usable data.  

In the October 2020 database that we used initially, Imperial1940 was poorly sampled. In 
May 2021, the database team added the along-strike displacement data profile established by 
Rockwell and Klinger (2013) to supplement the data in the original FDHI database. However, the 
Rockwell and Klinger (2013) dataset only covers a small portion of the Imperial1940 surface 
rupture. Also, this dataset was sampled at much higher frequency. It shows much greater along-
strike variability and, overall, appears incomparable with displacement measurements from the 
rest of the Imperial1940 surface rupture or with data from other strike-slip events. We decided to 
use the dataset in the original October 2020 database and not the Rockwell and Klinger (2013) 
datset as the preferred data source for Imperial1940. 

GalwayLake has only 8 usable displacement measurements. Almost all these 
measurements are on the southern part of the surface rupture. HomesteadValley has only 4 usable 
principal displacement measurements.    

For Hualian, available data only cover a small portion of the surface rupture onshore of 
Taiwan. Most of its rupture is offshore to the northeast, under the Pacific Ocean. Unmapped 
surface rupture also is likely to the southwest.  

Surface rupture and measurement data for IzuOshima and IzuPenisula are only on Honshu 
Island. Surface ruptures offshore to the southeast are undocumented. 

Pisayambo has only 11 displacement measurements. These measurements have amplitudes 
that are much higher than expected given the magnitude. Also, rupture mapping is at a much lower 
resolution than other events. The entire surface rupture is mapped as a single continuous line. 
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2.2.2 Dataset Selection 

We decided to allow only one selected data source for events that have multiple datasets to avoid 
the need to (1) develop and justify a method to merge different sources of data, and (2) track the 
effects of individual datasets on regression analysis and results. Justifying selection of a particular 
dataset is easier and more straightforward. The decision to work with a selected dataset was also 
based on the following considerations: (1) rupture traces and displacement measurements that 
complement each other should be dealt with differently from those that supplement each other; 
however, determining which measurement points or rupture traces from different datasets 
supplement each other and which complement each other is difficult and time consuming; (2) 
different datasets often have different mapping resolution and different measurement accuracy so 
mixing them would not be ideal. We also preferred not to salvage data entries from datasets that 
are not selected because data salvation is complicated to perform, its outcome is difficult to justify, 
and benefits are not obvious. 

In the early stage of our study, one exception to our one dataset per event rule is 
Balochistan. This event exerts large influences on the estimated magnitude scaling, particularly in 
the October 2020 version of the FDHI database. We initially analyzed principal displacement data 
from the two Balochistan datasets separately. After adding three strike-slip events from the July 
2022 database update, the influence of Balochistan is diluted, and the single-dataset rule was again 
enforced.   

Among the 29 selected events listed in Table B.1, four have two rupture datasets: Darfield, 
Duzce, Ridgecrest1, and Ridgecrest2. Rupture dataset selection is mainly based on FDHI database 
team’s recommendation (a pdf file titled “Notes on alternative rupture datasets,” distributed as part 
of the October 2020 FDHI database release). In addition, we consider completeness of spatial 
coverage because it affects the estimation of rupture length, which is a critical parameter in data 
analysis and model development. We also prefer the same mapped rupture data source as the 
preferred point measurement dataset (i.e., companion rupture and measurement datasets). Table 
B.2 summarizes the selected and excluded rupture datasets and primary reasons for dataset 
selection. FDHI database duplicates each entry in the flatfile and shapefile for measurement data 
when there are two rupture datasets. We eliminated duplicated entries associated with excluded 
rupture datasets.  

Selection of measurement dataset is largely based on availability of high-quality 
measurements that are classified as principal. For each measurement point, the FDHI database 
offers two attributes (net_flag and qual_code) to indicate data quality and suggested usage. Three 
categories are in net_flag, and multiple codes are in qual_code. Explanation of these indices from 
the FDHI database report are reproduced in Table B.3 for easy reference.  

Among the 29 selected events listed in Table B.1, 14 have multiple measurement datasets. 
Criteria for measurement dataset section include (1) dataset that matches the selected rupture 
dataset (i.e., companion rupture and measurement datasets by the same authors); (2) dataset with 
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the largest number of high-quality principal displacement measurements; and (3) dataset that has 
more complete spatial coverage. 

A measurement dataset that matches the rupture dataset is more likely to have measurement 
points that are located on mapped ruptures, avoiding potential error or inaccuracy induced from 
projecting measurement point to the nearest rupture. Companion datasets also mean both 
measurements and rupture maps would have similar accuracy and detail levels of study. A larger 
number of high-quality measurements is beneficial in regression analysis for model development. 
Table B.4 summarizes selected and excluded measurement datasets and primary reasons for 
dataset selection. 

2.2.3 Excluded Ruptures and Measurements in Selected Datasets 

In the FDHI database, each mapped rupture polyline in a given dataset is assigned a unique rupture 
identification number (RUP_ID). The significance of RUP_ID, however, is not obvious. Often a 
continuous rupture trace consists of multiple rupture lines (i.e., multiple RUP_IDs).   

Similarly, each measurement point in a given dataset is assigned a unique point 
identification number (PT_ID). In some cases, multiple measurements are co-located, in which 
case, each measurement is identified by a measurement identification number (MEAS_ID).    

The first subset of data in a selected dataset that we excluded involves measurement points 
and ruptures flagged as from aftershocks in FDHI database. Three events have aftershock surface 
ruptures and measurements: Kumamoto, Landers, and Yushu.  Aftershock related features were 
eliminated because it is likely that aftershocks behave differently from mainshocks and produce 
surface ruptures that have different characteristics. Ground motion model development usually 
also excludes aftershocks or includes an aftershock term to capture the mainshock-aftershock 
difference.  

For Denali, the style of faulting on the Susitna Glacier fault is reverse instead of strike-slip. 
Ruptures associated with this entire segment (the western most segment) were excluded. 
Displacement measurements on this segment are from a different source than measurements on 
the main surface rupture, so our rule of working with one selected source automatically eliminated 
them. Other strike-slip events in the database do not appear to have segments with distinctively 
different faulting styles.   

Some mapped surface ruptures (and associated displacement measurements) were 
excluded because they appear to be from nontectonic processes or are triggered along other 
existing faults.  All excluded ruptures are classified as distributed in the database. They have little 
to no effect on analysis of principal ruptures and displacement. Affected events include 
ChalfantValley (scatter ruptures in a large area to the northwest, likely non-tectonic), Kobe 
(ruptures and displacement measurements about 4.5 km to the southwest, appear to be triggered), 
and Yutian (dense features to the northwest, appear to be due to other processes). 
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For a given event, if the selected measurement dataset contains measurements that belong 
to one of the following three categories, they were eliminated from further analyses:  

1. Measurements that do not have recommended net displacement values (The net 
slip field in the database is populated by “-999”).  

2. Measurements that have poor quality. We excluded all measurements with quality 
code greater than or equal to 3000 (see Table B.3 for explanations of quality 
codes). Reasons for assigning a specific measurement as having quality code of 
3000 or greater constitute sound reasons for excluding them. We kept all 
measurements with quality codes of 2000 and 2001 because these are high quality 
data, flagged as “check” only because they co-locate with measurements in 
competing datasets. This is not a problem because we worked with only one 
selected dataset. 

3. Measurements that are co-located with other measurements in the selected dataset. 
These co-located measurements usually reflect measurements made through time, 
(i.e., with varying days elapsed after the event when the measurements were made). 
These events include ElmoreRanch, Napa, and SuperstitionHills. We selected the  
newest measurement and excluded others because (1) for most events, no 
information is available on when the measurements were made; (2) for other 
events, most measurements were made within a couple of months after the event; 
and (3) the only reason we would want to choose a measurement that is not the 
newest in the time series would be if we want to exclude displacement that is not 
co-seismic (e.g., after slip), which is not practical given data limitation. In the end, 
it does not matter because only one co-located point actually has a recommended 
net displacement value with a few exceptions. One exception is a pair of Napa 
points (PT_ID of 289 and 290 are co-located), and we decided to randomly select 
290 and exclude 289. Another exception is a pair of Darfield points (PT_ID 30, 
MEAS_ID 1 and 4). It is not clear why these co-located measurements have 
different displacement values. MEAS_ID 4 was chosen because it is noted as 
having higher quality in the original publication.     

   

2.2.4 Modification to FDHI Principal and Distributed Classification 

Upon examining the classification in the October 2020 FDHI database, we noticed a few cases in 
which principal and distributed rupture and measurement classification appears inconsistent with 
definitions given or with our expectation, so we made slight modifications. In other cases, the 
FDHI classification was modified to be consistent with our modeling approach. Details of 
modifications for each event were discussed internally and agreed upon by team members. Also, 
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details of modifications were made available to the FDHI database team who, in many cases, 
agreed with our modifications and updated their classification in the subsequent database updates.    

 For most events, the FDHI classification is honored without modification. We appreciate 
the “ranking” attribute in the FDHI database. It provides convenience to the model development 
teams. More importantly, it helps achieve some level of consistency among teams participating in 
the FDHI project.  

Aside from modifications to miscellaneous features that appear to have been assigned a 
questionable category, the need for modification arises from the way we calculate displacement 
hazard, which is based on the different behavioral characteristics of principal and distributed 
ruptures. By definition, principal displacements are associated with longer and relatively 
continuous rupture traces that show long-term geologic evidence of faulting. They have larger 
amplitudes. Distributed displacements are associated with scattered minor features. Their 
appearances can be random, although in general, they attenuate with increasing distance to 
principal rupture trace. In the current project, we follow the P11 approach of modeling principal 
and distributed displacement separately. Principal displacement is modeled as a function of along-
main-trace distance, whereas distributed displacement is modeled as a function of strike-normal 
(off-main-trace) distance. Modification to the FDHI classified ruptures and displacements fall into 
three categories: (1) distributed to principal, (2) distributed to nontectonic, and (3) miscellaneous.  
No measurements and ruptures classified as principal in the FDHI database were modified.  

We modified the FDHI classification of some distributed measurements to principal when 
these measurements (1) have substantial net slip (e.g., greater than a couple of meters or their net 
slip is substantial compared to nearby principal net slip), (2) are associated with ruptures that are 
relatively long and continuous (e.g., longer than a few kilometers); and in some cases, (3) are 
associated with faults mapped before the earthquake. When these criteria are met, observed net 
displacements often vary along strike, rather than in the strike-normal direction. Therefore, 
modeling them as principal displacement is appropriate. Modified events include ElmoreRanch, 
Hector, Kobe, Landers, Napa, Neftegorsk, Ridgecrest1, and Ridgecrest2.     

2.3 MAIN RUPTURE TRACE AND COORDINATE SYSTEM 

As discussed previously, rupture and displacement data in the FDHI database are reported at 
georeferenced observation locations with high position precisions. Challenges are numerous in 
analyzing such data in a way that takes advantage of the high location accuracy. One of these 
challenges, perhaps the most fundamental one, is how to define a single main rupture trace for a 
given event from an often-complex network of mapped surface ruptures. A single main rupture 
trace is needed to establish a local reference coordinate system in which measurement data are 
analyzed to develop predictive models. Ideally, hazards are also calculated in the same reference 
coordinate system relative to a mapped fault trace in application.  
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Figure 2.1 illustrates the reference coordinate system and geometric parameters used in 
P11 for a site located at distance Δ from a mapped fault trace. The footprint area to be considered 
has dimension z (area z2) and is centered at the site. Distance ratio, l/L, is used to define the location 
along the main trace, where l is along-strike (along-main-trace) distance, and L is total rupture 
length. An earthquake may or may not rupture the entire fault. Parameter s represents rupture 
location on the mapped fault. In P11 study, principal and distributed displacements are modeled 
as a function of l/L and Δ, respectively. 

In fault displacement studies, the amplitude of principal displacement (and total 
displacement or deformation across the entire rupture zone) is plotted against along-strike distance 
to establish an along-strike displacement distribution profile (also known as displacement curve or 
slip profile). Specific displacement parameters vary from study to study. For example, the 
displacement parameter is net slip for most FDHI teams. It is lateral slip in P11, and vertical slip 
in Youngs et al. (2003), Moss and Ross (2011), and Moss et al. (2022). See Table 3.1 in Kuehn et 
al. (2022) for more information on displacement metrics and parameters used in past and ongoing 
fault displacement hazard studies. Displacement profiles are useful in understanding rupture 
mechanics and in studying the characteristics of earthquake energy release. They are essential in 
fault displacement hazard assessment.  

There is not a standard approach to define a general along-strike direction to plot 
displacement profiles. For example, different approaches were used in two influential publications. 
Wesnousky (2008) developed slip profiles by connecting measurement points and plotting 
displacement against the cumulative rupture length calculated using coordinates of measurement 
points. DuRoss et al. (2020) projected displacement measurements to mapped rupture traces to 
develop displacement curves for individual rupture traces, then combined them along a linear trace 
to obtain a cumulative displacement profile. Lack of a standard approach makes it difficult to 
compare displacement curves developed by different researchers and from different earthquakes, 
particularly when detailed characteristics such as displacement gradients in areas of complex 
rupture geometry are of interest. It also leads to inconsistent estimates of total surface rupture 
length which is an important parameter in hazard assessments.        

Distributed displacement and deformation generally decrease as distance to the main 
rupture trace increases. How displacement or deformation attenuates with increasing rupture 
distance is another important aspect of fault displacement hazard assessment. Evaluation of the 
attenuation characteristics of distributed discrete displacement and off-fault deformation in the 
near-fault region is particularly sensitive to rupture distance, which can be affected substantially 
by how a main rupture trace, or a reference line is defined.   

In the published PFDHA, including the P11 study, FDMs predict principal displacement 
as a function of along-strike distance (and other variables). They predict distributed displacement 
as a function of closest distance to main rupture trace. This implies a local reference coordinate 
system with the two orthogonal reference axes in the fault-parallel and fault-perpendicular 
directions, respectively. Again, there is not a standard way to define a main fault trace, leading to 
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inconsistency in hazard calculations at different sites along the same fault due to the complex 
nature of fault geometry. This problem is especially pronounced when attempting to develop fault 
displacement hazard maps such as those shown in Figure 11 of P11 and Figure 8 in Chen and 
Petersen (2011).  

As shown in Figure 2.1, PFDHA requires a coordinate system with the origin on the 
modeled (mapped) fault and the two orthogonal coordinate axes in the local strike-parallel and 
strike-normal directions, respectively. In P11, the origin of the reference coordinate system for 
each event was anchored on a main rupture trace defined from mapped surface ruptures. The main 
trace was drawn manually to follow the most important principal ruptures.     

For this study, we developed a method to determine the main rupture trace from mapped 
surface ruptures called the least-cost path (LCP) analysis. The LCP is essentially a semi-automated 
version of the manually drawn main trace in P11. An introduction to the LCP analysis method in 
the ArcGIS is included in electronic supplements. A brief summary is provided below.   

2.3.1 Least‐Cost Path Analysis 

The LCP analysis is a raster analysis using source and destination points to find the most cost-
effective path over a given surface. The “cost” is not necessarily economic based but can be a 
function of time, distance, or a unitless criteria defined by the user (Briney, 2014).  Requirements 
for the LCP analysis include a source raster, cost raster, destination raster, and an algorithm to 
calculate the LCP (Chang, 2012).  

The source raster defines the starting point of calculating the minimal accumulated travel 
costs to each cell within a given surface. The cost raster combines the various “costs” or impedance 
into one comprehensive raster. Using the source and cost rasters, a cost distance analysis is 
performed using the center, or node, of each cell to calculate the cost of travel to each of its eight 
neighboring cells. The result of this analysis is a cost distance raster representing the accumulated 
cost of travel to each cell from the source. The cost distance analysis also creates a backlink raster 
that encodes the direction of travel from each cell to its lowest cost neighbor. The cost path analysis 
then uses the destination raster and the cost backlink raster to trace a line back to the source 
following the direction of each cell to the lowest cost neighbor thus producing the least-cost path.   

2.3.2 LCP as Main Rupture Trace and GC2 as Coordinate System 

Using the LCP-defined trace as the main rupture trace is a substantial improvement over the 
manually drawn main rupture trace in P11. Manually defining a main rupture trace requires 
considerable professional judgement and can be hard to reproduce when mapped surface ruptures 
consist of numerous parallel-subparallel traces, when they form a complex crisscrossed network, 
when they are highly fragmented, and when large gaps exist between mapped traces either because 
these areas are inaccessible, or because surface ruptures are obscured by shallow soft sediments.  
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As an example, the LCP for Landers is shown in Figure 2.2a, along with mapped principal 
and distributed ruptures. Measurement points are shown in the close-up view of a stepover area 
(Figure 2.2b). The LCP follows the mapped rupture traces closely, particularly the principal 
rupture traces, and represents the best pathway connected by mapped ruptures from one endpoint 
of the rupture zone to the other. It retains the geometric properties (turns and bends) of the mapped 
rupture traces that it follows. Having the main trace closely follow mapped rupture traces is highly 
desirable in modeling behavior of distributed ruptures as they mostly vary with closest distance to 
the main rupture (i.e., strike-normal distance). However, geometric complexity in the LCP can 
lead to strike-normal and strike-parallel coordinates that vary sporadically. To improve distance 
calculations, we adopt the GC2 system developed by Spudich and Chiou (2015) to calculate the 
fault-parallel (u_LCP) and fault-normal (t_LCP) coordinates for all observation measurement 
points relative to the LCP. The u-LCP and t_LCP are then used in subsequent data analyses and 
model development. Coordinate u-LCP is taken as the variable 𝑙 and t_LCP as the variable r in 
PFDHA framework of P11. Rupture length, L, is the LCP length. 

2.3.3 Comparison of LCP with ECS 

As mentioned previously, the FDHI database includes strike-parallel (u) and strike-normal (t) 
coordinates of a point with respect to ECS, for which the strike-parallel axis follows a smooth 
reference trace. The ECS reference trace for Landers is also depicted in Figure 2.2. The main 
differences in reference traces between LCP and ECS are (1) LCP is longer than ECS because ECS 
is highly smoothed; (2) LCP follows mapped surface rupture, and ECS trace does not; and (3) in 
areas very close to these reference traces, LCP divides features on its two sides in a way that is 
perhaps more meaningful geologically than ECS. The differences between LCP and ECS are 
illustrated more clearly on the zoomed-in view (Figure 2.2b).   

Figure 2.3a compares along-strike distribution of measured principal displacement in the 
LCP and ESC coordinate systems, using Landers as an example. Along-strike distance becomes 
increasingly and systematically larger along LCP than along ECS because LCP is longer. This 
affects the along-strike gradients of estimated displacement curves somewhat, but not 
substantially.  

The choice of coordinate system affects strike-normal distance more substantially and in 
an unsystematic way. Figure 2.3b compares strike-normal distribution of measured distributed 
displacement from Landers in the LCP and ECS coordinate systems. Distance to LCP is obviously 
different from distance to ECS. Displacement models developed using these two different 
coordinate systems will have different attenuation characteristics in the vicinity of these reference 
lines where the amplitude of displacement has the steepest attenuation. Therefore, it may be 
important that the coordinate system used in a PFDHA application is consistent with the coordinate 
system used in data analyses and model development.  
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2.3.4 Significance of LCP as Main Rupture Trace 

Because the main rupture trace developed using LCP mostly follows mapped rupture traces, it is 
a good representation of the extent and geometry of the earthquake fault and clearly separates 
features on the two opposite sides of the fault. Highly smoothed reference traces such as ECS has 
the advantage of being simple, but ECS mixes features on the opposite sides of the fault in the 
near-source region, which can be undesirable for dipping faults in which attenuation characteristics 
in the hanging wall and footwall can be different. Applying GC2 coordinates relative to the LCP 
anchors the strike-parallel axis on the LCP, such that the resulting coordinates (t_LCP and u_LCP) 
are truly in the directions perpendicular and parallel, respectively, to a mapped rupture or a trace 
inferred from mapped ruptures. Because this coordinate system incorporates the geometric details 
of mapped ruptures, the strike-normal coordinate (t_LCP) is a more accurate measure of distance 
to the rupture trace.   

The ability to capture geometric details of mapped ruptures and to use an accurate rupture 
distance is important in the P11 PFDHA approach. A unique feature of this approach is that it 
includes a component model quantifying the uncertainty in the location of surface rupture from 
future earthquakes. Location uncertainty is quantified by systematically measuring distances 
between a fault trace that geologists were able to map before an earthquake and the precise location 
of the corresponding surface rupture trace mapped after the earthquake. Such distance measures 
would not be meaningful if either the rupture traces mapped after an earthquake or fault traces 
mapped before that earthquake are highly simplified and smoothed.  

In a PFDHA application, a hazard analyst would usually start with mapped fault traces. For 
faults with simple geometry and a well-defined main fault trace, distance calculations are straight 
forward. In such cases, LCP analysis and GC2 calculations may not be necessary. However, 
earthquake faults are rarely simple. In fact, they are often complex, particularly when mapped in 
a detailed manner with rapidly advancing remote sensing techniques. Also, mapped surface 
ruptures from an earthquake are often used to update and improve fault traces. Updated fault maps 
are then used in future hazard calculations. For example, the current USGS Quaternary Fault and 
Fold database (https://doi.org/10.5066/P9BCVRCK) incorporates surface ruptures from the 1992 
Landers earthquake, which as depicted in Figure 2.2, forming a complex fault zone. Similar to 
applications in analyzing surface ruptures for model development, LCP can be applied to define a 
main fault trace from complex mapped faults for hazard analysis.  In this case, the ability of LCP 
to follow actual mapped fault traces and to reflect turns and bends of mapped faults is especially 
desirable in producing large scale and detailed probabilistic fault displacement hazard maps. 
Producing probabilistic fault displacement hazard maps for major fault zones in California bears 
practical and engineering significance in many applications that are important to the missions of 
the CGS, California Department of Transportation, and USGS.  



 

16 

2.4 AGGREGATED NET PRINCIPAL DISPLACEMENT 

Often earthquakes rupture the surface along multiple subparallel fault traces and branches as is the 
case of Landers (Figure 2.2). In areas where principal ruptures overlap along the main trace (i.e., 
the LCP), aggregating principal displacements on these parallel traces is necessary to obtain the 
total principal displacement across the rupture zone. The total principal displacement is then 
treated as if it is located on the main trace, and an along-strike displacement profile for the 
aggregated principal displacement is established for model development.   

The calculation of total principal displacement would be straightforward if displacement 
measurement points on multiple subparallel rupture traces have common along-strike coordinates 
(i.e., common u_LCP values) and if they are spaced regularly along the LCP. This is not the case 
for displacements measured by geologists in the field. Figure 2.2b clearly shows that displacement 
measurement points are distributed irregularly along rupture traces. These points do not have 
common u_LCP values, nor do they have regular spacing.  

A method that makes intuitive sense would be to resample displacement measurements by 
interpolation to obtain values on a set of points equally spaced along the main rupture. Such 
resampling, however, is undesirable for model development because (1) resampling would alter 
(increase) the original sample size substantially; (2) resampling would result in regression statistics 
dominated by interpolated values instead of the original measured values; and (3) interpolated 
displacement values depend on interpolation method, and it is not possible to predict which 
interpolation method works best prior to advanced statistical analyses for principal displacement 
model development.     

We developed a method in which interpolation and summation are performed only at the 
original measurement locations so that the original sample size is maintained, and interpolation is 
minimized. Figure 2.4a is the map view of a simple case in which a principal rupture branch is 
subparallel to the main rupture trace defined by the LCP. As can be seen from this figure, both the 
main rupture and the branch consist of multiple mapped rupture lines, and each line has a unique 
identification number (RUP_ID) in the FDHI database. In our analysis, though, both the main 
rupture and the branch are treated as continuous surface ruptures (either a segment or a branch). 
Small scale discontinuities and complexities seen in Figure 2.4a are common and are often an 
inherent part of surface rupture due to near surface and, sometimes, surface constraints. A mapped 
rupture trace may end artificially as the result of an area being inaccessible to the geologists. There 
are cases where gaps between two rupture lines are so small that the lines are practically 
continuous. Yet, they are mapped as separate lines and have separate RUP_IDs. For these reasons, 
we do not use RUP_ID in our analysis. Instead, we manually group mapped ruptures into segments 
or branches, assign a number to each, and use these numbers to track overlaps along the LCP.  

The method to aggregate principal displacement involves manually identifying subparallel 
segments and branches that overlap when projected onto the LCP to develop a simple segmentation 
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model, attributing each overlapping segment or branch with a unique identification number, then 
utilizing the identification number to aggregate principal displacement with an algorithm.    

2.4.1 Simple Segmentation Models 

The purpose of developing a simple segmentation model is to identify and organize measurement 
points associated with subparallel segments and branches. Segmentation is based on information 
in published geologic literature; finite-fault models in the USGS Significant Earthquake Archive 
(USGS, 2021) and in the SRCMOD online database of finite-fault rupture models (Martin and 
Thingbaijam, 2014); and characteristics of mapped surface ruptures. Stepovers, substantial 
changes in orientation, large gaps on the rupture-length scale, presence of low valleys on the along-
strike slip profile, and the occurrences of distributed ruptures at the rupture length scale are good 
indications of segment boundaries. For each event, we assigned sequential whole numbers to 
segments. The segment number increases from the west to the east (i.e., in increasing u_LCP 
direction). Numbers with decimal points indicate subparallel branches, and the single digit after 
the decimal point indicates branch number. As an example, Figure 2.5 illustrates the segmentation 
model for Landers. Each measurement point is assigned a segment or a branch number. These 
numbers are then used to track principal displacements that should be added to obtain aggregated 
principal displacement.   

2.4.2 Computation of Aggregated Principal Displacement 

The method for aggregating principal displacement is explained using the simple case of a rupture 
branch subparallel to the main rupture shown in Figure 2.4a. The figure is a map view of principal 
ruptures, distributed ruptures, displacement measurement locations, and the main rupture trace 
delineated by the LCP.  Locations of measurement points are shown as solid blue dots, darker blue 
on the main trace and lighter blue on the branch. The main trace shown is a small section of 
segment 1, and the branch is labeled as 1.1 in the simple segmentation model for Landers showing 
in Figure 2.5. 

As discussed previously, principal displacement is modeled as a function of distance along 
the LCP, which essentially means relocating (or projecting) all measurement points to the main 
trace according to their u_LCP coordinates, as indicated by the thin gray lines  (perpendicular to 
the main trace) with arrow heads and red open circles in Figure 2.4a. Principal displacements are 
plotted against the u_LCP coordinates in Figure 2.4b. Connecting measurement points on the main 
trace forms displacement profile for segment 1. Similarly, connecting measurement points on the 
branch forms the displacement profile for branch 1.1.  

On displacement profile for segment 1, an interpolated value is obtained at each u_LCP 
coordinate where there is a measurement on branch 1.1. These interpolated values are calculated 
by linear interpolation using the two nearest neighboring points on segment 1. Likewise, on the 
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displacement profile for branch 1.1, an interpolated value is obtained at each u_LCP coordinate 
where there is a measurement on segment 1; interpolated values are calculated by linear 
interpolation using the two nearest neighboring points on branch 1.1.  

Finally, at each u_LCP value where there is a measurement point, the aggregated principal 
displacement is the arithmetic sum of the measured and interpolated displacement values. The total 
principal displacements are shown as open red circles in Figure 2.4b. These are the values used in 
subsequent regression analysis for principal FDM development.  

Figure 2.6a is a map view covering the complete length of branch 1.1 that overlaps with 
segment 1 along the LCP, and Figure 2.6b shows individual principal displacement measurement 
points and aggregated displacement. Measurement points in Figure 2.6a are color coded by their 
percent contribution to the aggregated principal displacement. The percent contribution data will 
be useful in providing guidance for hazard calculation in engineering application.  

2.4.3 Comparison of Aggregated and Measured Displacement Profiles 

Figure 2.7 compares the along-strike distributions of the as-measured and aggregated principal 
displacements for Landers as an example. Measured displacement profile shows higher along-
strike variability with these general patterns: (1) displacement is higher in the central portion of 
rupture and decreases toward ends of ruptures, and (2) there are areas of apparently low 
displacement, which seem to correspond well with segment boundaries. Distribution of the 
aggregated principal displacement is less variable compared to the case when displacements are 
not aggregated and simply projected onto the LCP trace. The aggregation process reduces 
variability and is a better representation of total slip on all principal ruptures.  

As mentioned in Chapter 4, we adopt the PFDHA framework of P11 and model principal 
displacement and distributed displacement separately. Therefore, the displacement aggregation 
across the rupture zone is only applied to the principal displacement. Other model development 
teams participating in the FDHI project aggregate not only principal displacement, but also 
distributed displacement for their model development. The aggregation method varies from team 
to team. Perhaps the similarity can be expected considering how small distributed displacements 
are compared to principal displacements and the small differences between along-strike 
displacement distribution in the LCP and in the ECS coordinates as shown in Figure 2.3a.      

2.5 DATA DISTRIBUTION 

Figure 2.8 shows the geographic distribution of epicenters of all strike-slip earthquakes in the 
FDHI database, in which events included and excluded from our model development are identified. 
Figure 2.9 shows the distribution of selected displacement measurements (D) plotted against M in 
along-strike distance bins. Each bin is defined by normalized location (l/L) along the main trace. 
It shows displacement generally increases with M, and there appears to be larger scatter for smaller 
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M. Tier-1 and tier-2 data are explained in Section 3.2.2.1 and in Appendix D. Figure 2.10 shows 
distribution of displacement measurements along normalized rupture location for individual 
selected earthquakes. There is a large variation in spatial coverage of displacement measurements 
and in sampling rates. Figure 2.11 is a histogram showing number of slip measurements (Nslip) for 
each individual earthquake. Out of the 29 strike-slip earthquakes, four have more than 200 
measurements, and all four earthquakes are of M ≥ 7.1.  These four earthquakes are the 1992 

Landers (Nslip = 566), 1999 Izmit Kocaeli (Nslip = 263), 2013 Balochistan earthquake (Nslip = 247), 
and 2019 Ridgecrest mainshock (Nslip = 226).  
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Figure 2.1.  Geometric parameters used in fault displacement model development and hazard 
analysis (modified from Petersen et al., 2011). Variables l and Δ are utilized to 
specify the along‐main‐trace and off‐main‐trace position, respectively, of a point.  
Variable L is the length of the main trace. Variable s is utilized to track the position 
of main trace along the mapped fault trace.   
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Figure 2.2.  Comparison of least‐cost path (LCP) and event coordinate system (ECS) 
reference lines for the 1992 M 7.28 Landers earthquake. (A) View of the entire 
rupture length. (B) Close‐up view of a stepover area. 

Basemap: ESRI 
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Figure 2.3.  Comparison of measured displacement from Landers in the coordinate 
systems for least‐cost path (LCP) and event coordinate system (ECS). (A) 
Along‐strike distribution of principal displacement. (B) Strike‐normal 
distribution of distributed displacement. 
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Figure 2.4.  Aggregation of principal displacements on subparallel principal rupture traces. (A) 
Map view. (B) Individual and aggregated displacement. 
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Basemap: ESRI 

Figure 2.5.  Segment and branch number assignment for Landers measurement points. 

 



 

25 

 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

6.5 7.0 7.5 8.0 8.5

N
et

 p
ri

nc
ip

al
 d

is
pl

ac
em

en
t (

m
)

Distance along main trace (LCP) (km)

Aggregated displacement

Measured on segment 1

Measured on branch 1.1

Interpolated from segment 1 on branch 1.1

Interpolated from branch 1.1 on segment 1

B 

A 

 Figure 2.6.  Aggregation of principal displacement for segment 1 and branch 1.1 of Landers 
surface rupture. (A) Map view with measurement location color‐coded by percent 
contribution to the aggregated displacement. (B) Individual and aggregated 
displacement. 
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Figure 2.7.  Comparison of along‐strike distributions of principal displacement. (A) As‐
measurement principal displacement. (B) Aggregated principal displacement. 
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Basemap: ESRI 

Figure 2.8.  Epicenter distribution of strike‐slip earthquakes in the Fault Displacement Hazard Initiative (FDHI) database (Sarmiento et 
al., 2021), including earthquakes selected for model development and those excluded for reasons discussed in Section 
2.2.1. 



 

28 

  

Figure 2.9.  Distribution of displacement measurements plotted with magnitude (M) in along‐strike distance bins. Each bin is defined by 
normalized location along the main trace (i.e., values of l/L, where L is rupture length and l is distance to the nearest end of 
rupture). Tier‐1 and tier‐2 data are explained in Section 3.2.2.1 and in Appendix D. 
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Figure 2.10.  Distribution of displacement measurements along normalized rupture location (l/L) for individual earthquakes. Tier‐1 and 
tier‐2 data are explained in Section 3.2.2.1 and in Appendix D. 
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Figure 2.11.  Histogram of the number of slip measurements (Nslip) for an individual 
earthquake. Out of the 29 strike‐slip earthquakes, four have more than 200 
measurements, and all four are of M 7.1 or larger.  These are the 1992 Landers 
(Nslip = 566), 1999 Izmit Kocaeli (Nslip  = 263), 2013 Balochistan (Nslip = 247), and 
2019 Ridgecrest mainshock (Nslip = 226). 
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3 Development of Probabilistic Distribution 
Models for Principal Displacement 

As stated in the Introduction Chapter, our study aims to develop an updated probabilistic 
distribution model for the aggregated principal net displacement at points along the main surface 
trace (FDM, for brevity) of a strike-slip earthquake. FDM is estimated using a distributional 
regression on the selected FDHI displacement data described in Chapter 2. We adopt simple 
improvements to P11’s model formulation so that hazard analyst can readily use our model to 
compute the probability of exceeding a specific value of principal displacement, given the 
magnitude (M) of a future surface rupture and the normalized site location (𝑙2𝐿) along the main 
trace of that rupture. This probability of exceedance is one of the required input models in PFDHA, 
as described in Chapter 4 and Appendix A.  

 Our model development begins with a simple update to the FDM of P11 (their elliptical 
model, to be exact). This update provides us an opportunity to identify crucial refinements to P11’s 
original model formulation. Once the identified refinements are incorporated, modeling of the non-
normal probability distribution of FDM’s response variable becomes the main focus of subsequent 
model development, which leads to three interim updates to P11 before settling on our final model. 
In the first interim update, we use a data trimming method to help reduce the severity of non-
normality in response variable.  We then venture outside the familiar world of normality and try 
out the skew-normal (Azzalini, 1985; Azzalini and Capitanio, 2014) and the skew-t (Azzalini and 
Capitanio, 2003; Azzalini and Capitanio, 2014) distributions, which afford larger flexibility than 
the normal distribution by regulating the shape of their density functions through one or two 
additional distribution parameters. The simple update and the three interim updates are 
summarized in Section 3.2. The last model update, which assumes that response variable follows 
a negative exponentially modified Gaussian (nEMG) distribution, is presented in Section 3.3. In 
Section 3.4, we compare all FDMs presented in this Chapter (additional comparisons in the hazard 
domain are provided in Chapter 4) and explain why we prefer the last update. In Section 3.5, we 
assess the epistemic uncertainty in the predicted quantiles resulting from the epistemic uncertainty 
in the M-scaling relation of our preferred model. Finally, additional discussions about the preferred 
model are presented in Section 3.6, including a justification of the use of (symmetric) ellipse 
equation for the variation along the main trace, extension to asymmetric along-trace variation, 
magnitude scaling relations for the average (𝐷 ) and the maximum (𝐷 ) displacement over 
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measurement points along the main trace, similarity of the stochastic representation of selected 
displacement metric between our preferred model and other published models, and the applicable 
magnitude range of our preferred model. 

3.1 RESPONSE VARIABLE AND ITS PROBABILITY DISTRIBUTION  

An important decision by the developers of an FDM is the selection of the response variable to be 
modeled by their FDM. This decision entails the choices of a displacement metric and its algebraic 
transformation.   

 Different types of displacement metrics have been modeled in previously published FDMs. 
Youngs et al. (2003) and Moss and Ross (2011) modeled the vertical displacement in their FDMs 
for normal earthquakes and reverse earthquakes, respectively. P11 modeled the lateral 
displacement in their FDMs for strike-slip earthquakes. We choose to model the net principal 
displacement in this study. Note that our chosen metric differs from the metric of total 
displacement in that principal displacement does not include contributions from secondary 
(distributed) displacements and off-fault continuous deformation.  

 Once the displacement metric D is selected, a transformation of the selected metric may be 
applied.  In previously published FDMs, two types of transformation have been used: the identity 
transformation and the logarithmic transformation. The latter can be either the base-10 logarithm 
or the natural logarithm; the natural logarithm will be used throughout this study.   

 The selected transformation often dictates the type of probability distribution for use in 
regression analysis to model the probabilistic distribution of the response variable. For the identity 
transformation, the response variable is the displacement metric 𝐷 itself.  Because surface 
displacement is positive in value, the candidate probability distribution for 𝐷 or its normalized 
form 𝐷/𝐷 , where 𝐷  = the average of 𝐷 over points along the main trace, is limited to those 
supported on the positive half of the real line (0, ∞).  As two examples, gamma and Weibull 
distributions were used in the modeling of 𝐷/𝐷  in Youngs et al. (2003), Moss and Ross (2011), 
and Takao et al. (2013).  

The logarithmically transformed D can take on either positive or negative value; therefore, 
probability distributions with support on the entire real line (-∞, ∞) are eligible. In some of the 
FDMs of P11, the logarithmically transformed displacement metric was selected as the response 
variable, for which a normal distribution was assumed. We follow P11 and use the logarithmic 
transformation, but we are not limited by the normal distribution assumption, for reasons to be 
explained below.  

In summary, our choice of the response variable is the logarithmically transformed D, 
where D is the aggregated principal net displacement.  In forward application, logarithmic   
transformation is reversed via exponentiation. Hence, our FDM does not predict negative 
displacement, unlike when 𝐷 is modeled as a normally distributed variate. 
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3.2 INTERIM UPDATES 

In the course of our model development, we advance through four FDMs before settling on the 
final model. These four FDMs are interim updates to P11 that not only help improve P11’s model 
formulation but also help shape our views on the optimal probabilistic distribution of the FDHI 
displacement data. Summarizing the main points of each of these interim updates is thus not only 
informative but also necessary. Furthermore, a comprehensive documentation of interim updates 
has the potential benefit of allowing hazard analysts to assess each update in hazard applications 
where alternative assumption on probabilistic distribution is desired.  

 The four interim updates are summarized in this Section. Reading through a lengthy 
description of interim FDMs may be tedious and unnecessary for some readers. A short summary 
is thus provided below so that, at first reading, readers not interested in the technical details of 
interim updates may read this summary and skip to the final model described in Section 3.3.  

 The progression of updates begins with a simple update of P11’s FDM to the selected FDHI 
dataset (Section 3.2.1). This simple update helps us identify several necessary improvements to 
P11’s original formulations. The identified improvements include the adoptions of bi-linear M 
scaling relation, random-intercept mixed-effect modeling, M-dependent variance of the random 
intercepts, and non-normal distribution of 𝑙𝑛 𝐷 .  

 The first three of the identified improvements are implemented in Section 3.2.2. They bring 
the predicted 95th percentile to a level somewhat commensurate to historically observed maximum 
displacement in large earthquakes. As a way to handle data non-normality noted in Section 3.2.1.3, 
non-normality is made less severe through removal of a small number of data whose residuals are 
incompatible with the normal assumption. To facilitate identification, we devise a method using 
results of quantile regression (Koenker, 2005) to group data into two tiers; see Section 3.2.2 and 
Appendix D for more details. A total of 244 (out of 3,334) displacement data are identified as tier 
2. Tier-2 data are then excluded from the regression analysis of Section 3.2.2, in favor of a closer 
fit to tier-1 data by the normal distribution. Despite the success in reducing non-normality, there 
is still non-negligible deviation of the residual distribution from assumed normal distribution (see 
residual diagnostic plots in Section 3.2.2.6). 

To further improve fits to tier-1 data, normal distribution is replaced by the skew-normal 
(SN) distribution in Section 3.2.3. SN distribution is a generalization of normal distribution to 
introduce asymmetry in the probability density function (Azzalini, 1985; Azzalini and Capitanio, 
2014). SN includes a third distribution parameter that regulates both skewness and kurtosis. The 
extra flexibility helps substantially improve fit to tier-1 data residuals on both the left and the right 
tails (see residual diagnostic plots in Section 3.2.3.5).  

The SN-based model is incomplete in that it does not model tier-2 data. SN distribution 
struggles fitting tier-2 data when they are brought back into regression. Our aspiration to have a 
complete model for both tiers of data leads to the third update. In the third update, we seek an even 
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more flexible distribution and settle on the four-parameter skew-t distribution (ST) (Azzalini and 
Capitanio, 2003; Azzalini and Capitanio, 2014), which generalizes Student’s t distribution by 
introducing non-zero skewness (and hence asymmetry in the probability density function). The 
ST-based model is presented in Section 3.2.4. It only slightly improves on the already good fit of 
SN-based update, but accommodates both teir-1 and tier-2 data (see residual diagnostic plots in 
Section 3.2.4.4).   

One drawback of the SN and ST distributions is that they are more difficult to interpret and 
more cumbersome to use than the normal distribution. A second drawback is that the choice of 
either distribution lacks a geological underpinning. Our final and preferred model (presented in 
Section 3.3) improves on the above two shortcomings.   

3.2.1 Simple Update: Repeating P11 Regression Analysis on Selected FDHI Data 

Our first update to P11’s FDM is named ‘simple update’ because it is a repeat of P11’s regression 
analysis using the selected FDHI data. We focus on updating P11’s elliptical model for 𝑙𝑛 𝐷  
(Equation (13) in P11) because it renders a profile of D having approximately a linear slip gradient 
toward both edges of main trace, whereas P11’s quadratic and bilinear models do not. More 
discussions about the shape of the predicted profile of D are given in Section 3.6.1. On the 
statistical side, the elliptical model has the advantage that it affords a straightforward geometric 
interpretation of its coefficients (see also Section 3.2.2.2).  

3.2.1.1 Models for the location parameter  𝝁 and the scale parameter 𝝈 

 In P11, response variable 𝑙𝑛 𝐷  was assumed to follow a normal distribution with mean 
(location parameter) μ and standard deviation (scale parameter) σ, 

 

𝑙𝑛 𝐷 ~𝑁 𝜇 , 𝜎  

 

𝜇 𝐌𝒊,  𝑙2𝐿 𝑐 𝑚 𝐌 𝑐  𝑥∗  

 

(3.1)

where index j refers to a measurement in earthquake i, 𝑥∗ 1
 .

.
, 𝑙2𝐿 𝑙  /𝐿 , and 

𝐿  is the length of the main trace of earthquake i. Note that the definition of 𝑙  differs between P11 
and this study. In P11 (P11’s Figure 1 and our Figure 2.1), 𝑙  for measurement point j is the 

distance between its closest point on the main trace and its closer edge of the main trace, measured 
along the main trace.  P11’s definition of 𝑙  amounts to combining measurements symmetrically 

with respect to the midpoint of the main trace. Such operation is also called ‘data folding.’ The 
range of folded 𝑙2𝐿  is [0, 0.5].  In this study, 𝑙  is taken as the generalized strike-parallel 

coordinate (see Section 2.3.2) relative to the western end of the main trace. The range of 
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corresponding 𝑙2𝐿  is [0, 1]. To distinguish the two versions of 𝑙2𝐿 , we denote P11’s version 
as 𝑙2𝐿 , , where 𝑙2𝐿 ,  =   𝑙2𝐿  if  𝑙2𝐿  ≤ 0.5, and  𝑙2𝐿 ,  = 1  𝑙2𝐿  if  𝑙2𝐿  > 0.5. It does not 
matter which version  is used in the calculation of 𝑥∗ . We prefer 𝑙2𝐿 for its potential use in 

extending the symmetric 𝜇 to an asymmetric one.  

 In P11’s formulation, each observation point has its own mean 𝜇 , modeled as a linear 
function of covariate 𝐌𝒊. The dependence of 𝜇  on  𝑙2𝐿  is via the term 𝑐  𝑥∗ , which tracks the 

upper half of an ellipse centered at 𝑙2𝐿 = 0.5.  The variance parameter σ  is a constant for all 
observations (homoscedasticity), independent of M and 𝑙2𝐿.  

 This simple update is intended to be a repeat of P11’s statistical analysis; hence, we follow 
their approach of estimating the unknown coefficients 𝑐 , 𝑚 , 𝑐  of Equation (3.1) using least-
squares regression method without earthquake effect on the intercept 𝑐0, instead of the preferred 
mixed-effect regression method to be discussed later. The estimated coefficients are tabulated in 
Table 3.1. The variance parameter 𝜎2 is estimated as the residual variance, which is tabulated in 
terms of standard deviation in Table 3.1. Residual of the simple update is defined as𝜀
𝑙𝑛 𝐷 �̅� 𝐌𝒊,  𝑙2𝐿 , where �̅�  is the estimated mean parameter for (𝐌𝒊,  𝑙2𝐿 ) computed 
using the estimated coefficients. Residual 𝜀  is to be differentiated from the normalized quantile 

residuals presented later. 

3.2.1.2 Predictive Distribution from the Simple Update  

Predicted quantiles of displacement from the simple update and the original P11 FDM are shown 
on Figure 3.1. The 0.95 quantiles predicted for M > 8 ruptures at location 𝑙2𝐿 0.5 are much 
larger than the maximum displacements observed in several large historical earthquakes. The 
maximum displacement of strike-slip earthquakes in the FDHI database is 13.6 m from the M 7.7 
Balochistan earthquake.  Rodgers and Little (2006) reported a dextral slip of 18.7 m in the rupture 
of the 1855 New Zealand earthquake (whose magnitude is thought to be greater than 8.1) on 
the Wairarapa fault.  The study by Kumar et al. (2006) reported 26 m of slip along the Indian 
Himalaya (probably associated with the 1505 M 8.2 Nepal earthquake, a continental reverse 
earthquake).  On the theoretical side, dynamic rupture modeling by Wang and Goulet (2022) yields 
a maximum displacement in the range of 10 to 20 m for M 8 to M 8.2 strike-slip ruptures.  

3.2.1.3 Residual Diagnostics  

A set of five residual diagnostic plots are presented on Figure 3.2. The histogram of the 
standardized residual 𝜀 𝜎⁄  is far from the standard normal distribution. Relative to the standard 

normal distribution, the residual histogram has a thinner tail on the positive side and a fatter tail 
on the negative side, similar to that implied by the residuals shown on Figure 6 of P11. This is 
expected because the simple update involves only a change of dataset; no changes are made to the 
model formulation.      
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3.2.1.4 Improvements to P11’s Model Formulation 

In this section we further analyze the residuals to help identify areas where improvements to P11’s 
model formulations are needed. To help explain them, we invoke the mean earthquake 

residual 𝜀 ̅  ∑ 𝜀 , where 𝑛  is the number of displacement measurements in earthquake i. 

The quantity 𝜀̅  has been conveniently used to infer the random effect on individual earthquake’s 
mean parameter if the adopted regression model does not include an earthquake-specific random 
effect on  model’s intercept. In the following discussions, 𝜀̅  is utilized to justify the bilinear 
magnitude scaling of the mean parameter µ (item 1 below) and to compute the within-earthquake 
residual (𝜀 𝜀̅ ).  The quantity 𝜀̅  is a temporary patch to remedy the limitation of least-squares 

regression; it becomes obsolete once we formally adopt the mixed-effect regression in the 
subsequent interim updates.  

1. The 𝜀̅  shown on Figure 3.3 has the shape of a wedge, indicating that 𝜇 can be modeled 
more closely by a bilinear function of M rather than the linear function used in the 
simple update to P11. We fit the functional form of the ground motion model (GMM) 
of Chiou and Youngs (2008, 2014) to 𝜀 ̅ . The fitted curve (red curve on Figure 3.3) 
tracks the magnitude trend of 𝜀̅  well, indicating that this functional form is viable for 
the M-scaling of surface displacement. The formal adoption and implementation of the 
bilinear M-scaling relation in the framework of random-intercept mixed-effect 
regression is discussed in Section 3.2.2.2.    

2. Linear least-squares regression used in the estimation of the simple update (as well as 
the original P11) poses an estimation problem when measurement data size is uneven 
among earthquakes. Specifically, magnitude scaling rate may be overly influenced by 
a few well-measured earthquakes. With the adoption of the bilinear M-scaling relation 
in our study, this problem is non-negligible because the four strike-slip earthquakes 
having at least 200 displacement measurements are all of M 7.1 or larger (Figure 2.11). 
These four earthquakes, if not properly weighted, will have a large influence on the 
estimated magnitude scaling rate for M > 7.1, a range of great interest in application. 
The same issue has been recognized and addressed in the ground-motion model 
development. To provide a statistically sound  estimation, earthquake-specific random 
effect on 𝜇 model’s intercept (Abrahamson and Youngs 1992) has been used to tame 
the influence of well-recorded earthquakes on estimated mean parameter. Using 
residuals from the simple update, an example of the impact of proper weighting of data 
for individual earthquake is shown on Figure 3.3. Two very different bilinear M-scaling 
relations are revealed by the least-squares regression and the random intercept mixed-
effect regression. The fit by least-squares regression indicates a linear relation, whereas 
the fit by mixed-effect regression indicates a bilinear relation that tracks closely 
the 𝜀 ̅  of individual earthquake.  For the above reasons, we prefer mixed-effect 
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regression over least-squares regression for the FDM development. The mixed-effect 
formulation is introduced in Section 3.2.2.2. 

3. The standard deviation of within-earthquake residual of tier-1 data (tier classification 
is discussed in Section 3.2.2.1) is not a constant along the main trace (Figure 3.4), and 
a heteroscedastic 𝜎  is warranted. Reformulation from constant (homoscedastic) to 
heteroscedastic σ  is introduced in Section 3.2.2.3.    

4. Finally, the histogram and the normal quantile-quantile (Q-Q) plot of standardized 
residual (Figure 3.2) indicate a probabilistic distribution that deviates substantially 
from the standard normal distribution, indicating the normality assumption used in the 
simple update is inadequate. Efforts to find probability distributions that capture the 
observed data non-normality are presented in Sections 3.2.2 to 2.2.4 and in Section 3.3. 

 

 Data residuals do not exhibit a trend with 𝑥∗  (not shown) and 𝑙2𝐿  (top left panel of Figure 
3.2; see also Figure 3.4). We thus conclude that the ellipsse formulation (the 𝑐  𝑥∗  term) does not 
need reformulation. This conclusion is also valid for the subsequent model updates. We discuss in 
Section 3.6.2 the need and how to introduce asymmetry into the along-strike variation of the 𝜇 
parameter. 

 

3.2.2 Model1.NO: Mixed‐Effect Regression of Tier‐1 Data 

The first three refinements described above are implemented in the interim update Model1.NO. To 
handle data non-normality noted on Figure 3.2, we remove a limited number of small-displacement 
data to help bring the remaining data closer to normality. Identification of such small-displacement 
data is discussed in Section 3.2.2.1.  Note that data trimming (removal of extreme values) is not 
applied to the right tail of data distribution (data with larger displacements), which matters to 
engineering application.  

3.2.2.1 Tier Classification of Displacement Data 

Data removal is a common practice and has been used extensively in data analysis where outliers 
are present. To identify data to be removed, we devise a methodology that utilizes the results of 
parametric and non-parametric quantile regressions (Koenker, 2005) to group displacement data 
into two tiers, on an earthquake-by-earthquake basis. Details about the methodology is given 
Appendix D.  

Tier classification of a displacement point is based on its value. For most earthquakes and 
most locations on the main trace, the boundary between tier-1 and tier-2 classes corresponds to a 
small percentile of the available data values. Averaging over all earthquakes and all locations, the 
tier boundary corresponds to roughly the 15th percentile. We identify 244 data points (out of 3,334, 
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or roughly 7.5% of our dataset) as tier 2. A large portion of tier-2 data come from just a few 
earthquakes, most of which are relatively well-sampled earthquakes such as Landers, Hector Mine, 
and Izmit-Kocaeli. Tier classification of displacement data are shown on Figures 2.10 and 3.4 and 
also provided in column “Tier” of the electronic supplement 1.   

3.2.2.2 Model for 𝝁  

Normal distribution is again assumed in Model1.NO, but formulation for its 𝜇 (mean) parameter 
is revised as follows,  

 

𝑙𝑛 𝐷 ~𝑁 𝜇 , 𝜎  

𝜇 𝐌 , 𝑥∗ 𝑐 𝛿 , 𝑓 𝑓   

𝛿 ,  ~ 𝑁 0, 𝜎  

𝑓 𝑚 𝐌 𝑚
𝑚 𝑚

𝑐
𝑙𝑛

1 𝑒  𝐌

2
 

𝑓 𝑐  𝑥∗ 1  

 

(3.2)

Equation (3.2) contains two improvements to P11’s original 𝜇 formulation in Equation (3.1): 

 A random effect on the intercept of the 𝜇 model, 𝑐 𝛿 ,  

o Random intercept 𝛿 ,  represents the random earthquake effect on the mean 

parameter 𝜇.  

o Three types of data residuals are computed for use in the diagnosis of a random-
intercept GMM, and we also use them in the diagnosis of a random-intercept FDM 
assuming normality, such as the Model1.NO discussed here. Residual with respect 
to 𝜇  is called the within-earthquake residual; 𝛿 ,  is called the between-

earthquake residual; and residual with respect to (𝑐 𝑓 𝑓  is called the total 
residual. The variance of these types of residuals is called the within-earthquake 
variance 𝜎 , between-earthquake variance 𝜎 , and total variance, respectively. 

 A bilinear 𝐌 scaling relation, 𝑓  

o The M-scaling term 𝑓  in Equation (3.2) is taken from the GMM of Chiou and 
Youngs (2008, 2014). Its coefficients may be interpreted as follows. Coefficients 
𝑚 and 𝑚  represent roughly the linear M-scaling rate in the range of M <<  𝑚  
and M >> 𝑚 , respectively. A transition between 𝑚  and 𝑚  occurs in a magnitude 
range centered at 𝐌 𝑚 ; for this reason, 𝑚  is named the hinge magnitude of 
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bilinear M-scaling. The sharpness of the transition is determined by the value of 
coefficient 𝑐 ; the larger the 𝑐 , the sharper the transition. 

o Function 𝑓  is nonlinear in coefficients 𝑚  and 𝑐 . 

o The denominator 2 inside the ln function is not in the original 𝑓  of Chiou and 
Youngs (2008, 2014); it is included here so that 𝑐  can be interpreted as the mean 
parameter for M = 𝑚  at location 𝑙2𝐿 = 0.5; more discussions are given below. 

 In addition, the 𝑐  𝑥∗  term of Equation (3.1) is revised to 𝑐  𝑥∗ 1 .  Centering to 𝑥∗

1 (or 𝑙2𝐿 = 0.5) does not change the estimated 𝑐 , but it allows the interpretation of coefficient 𝑐  
as the mean displacement at the midpoint of an M = 𝑚  rupture trace. In contrast, P11’s 𝑐  is the 
mean at the edge of the main trace of an M = 0 rupture, an un-observable surface rupture scenario.  
Note that P11 and the FDMs discussed in this report do not ensure that predicted D is near zero at 
both edges of the main trace by tapering 𝜇 to a sufficiently negative value.  

 Geometrically, 𝑐 𝑐  𝑥∗ 1  tracks the upper half of an ellipse centered at (𝑙2𝐿 = 0.5, 
𝑐 . One can relax the assumption of along-strike symmetry by horizontally shifting the center 
away from 𝑙2𝐿 = 0.5 or adding an extra linear 𝑙2𝐿 term to the 𝜇 model (see Section 3.6.2).  

 Estimation of Model1.NO is carried out using the nonlinear mixed-effect regression 
method (Pinheiro and Bates, 2000), and the estimated coefficients are listed in Table 3.1.  A 
nonlinear regression is needed to estimate the nonlinear coefficients 𝑚  and 𝑐  in 𝑓 . Because the 
available earthquakes do not span a sufficiently large magnitude range, coefficient 𝑐  is not 
precisely estimated; the estimated value is about 232, and the estimation standard error is enormous 
(about 128,000).  Having such a large 𝑐  amounts to a pieces-wise linear relation, which we do 
not favor. We judge that 𝑐 = 10 is a proper choice because it provides an equally good fit to the 
data as 𝑐 = 232 does, yet it renders a reasonably gradual transition of scaling rate from 𝑚  to 𝑚 . 
Coefficient 𝑚  is estimated via the nonlinear mixed-effect regression. 

3.2.2.3 Model for Within-Earthquake Variance  

The improvement on the within-residual variance (𝜎  as discussed in Section 3.2.1.2 is 
implemented here. It is reasonable to assume mid-point symmetry in both 𝜇 and 𝜎 . To ensure that 
 𝜎  is symmetric about 𝑙2𝐿 = 0.5, we choose 𝑙2𝐿  as the covariate of the 𝜎  model.  

 To help study the along-trace variation of 𝜎 , we conduct a trial mixed-effect regression 
on tier-1 data, assuming homoscedasticity (σ  is a constant). The within-earthquake residuals from 
this trial run are then plotted on Figure 3.5. As a visual aid to help delineate the along-trace 
variation, standard deviations of within-earthquake residuals in 10 non-overlapping 𝑙2𝐿  bins are 

computed and plotted on Figure 3.5 after multiplying them by 1.65. This figure clearly indicates 
that σ  decreases with increasing 𝑙2𝐿 . This downward trend has been observed in previous 

studies. Youngs et al. (2003) stated that combining the displacement data symmetrically about 𝑙2𝐿 
= 0.5 can result in a larger variability that reflects the asymmetric pattern of measured 
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displacement.  P11 reported, in their bilinear model, a higher residual standard deviation for 
locations near the rupture ends (𝑙2𝐿  < 0.30) than for locations near the center.  

 The observed 𝑙2𝐿  dependence of binned σ  on Figure 3.5 can be adequately modeled by 
either a linear or an exponential function of 𝑙2𝐿 . These two functions cannot be differentiated by 
data in the tight [0, 0.5] range of 𝑙2𝐿 . We choose to use the latter, mainly because the logarithmic 

function is the default link function for the scale parameter of generalized linear model. Hence, we 
model the within-earthquake variance as follows: 

𝜎 𝑐  𝑒 ∗   (3.3)

The p-value of the likelihood ratio between the trial model (a constant 𝜎 , equivalent to 
 𝑐  = 0) and Model1.No (the 𝜎  model specified by Equation (3.3) and listed in Table 3.1) is less 
than 0.0001, which strongly rejects the assumption of homoscedasticity. 

3.2.2.4 Variance Model of Random Intercept 

In GMMs, the variance of random intercept has been found to be a function of magnitude (Youngs 
et al., 1995). To study the M-dependence of 𝜎  in FDM, the estimated 𝛿 , , 𝑖 1, 𝑁 , 
where 𝑁 29, of Model1.NO are plotted on Figure 3.6. As a visual aid, the standard deviations 
of 𝛿 ,  in five non-overlapping 𝐌 bins are also plotted on Figure 3.6. From this figure, 𝜎  clearly 

decreases with increasing M. We choose to model the observed trend by an exponential function 
of M. However, no small earthquakes are in the dataset to validate the large 𝜎  in the M < 6 range 

that would have been predicted by extrapolating the fitted trend. Furthermore, the mechanical 
reason for such dependence on 𝐌 is not yet understood, and a theoretical justification supporting 
the large 𝜎  value at M < 6 is not known to us.  Hence, we decide to impose a cap on the value 
of 𝜎  and model it as follows: 

 𝜎 𝑐  𝑒  ∗ 𝐌 . ,    (3.4)

The cap is set to the fitted 𝜎  at M = 6.1, near the lower magnitude bound of selected strike-slip 

earthquakes.  

 Estimation of coefficients 𝑐 , 𝑐  is conducted outside the mixed-effect regression by 
regressing Equation (3.4) on 𝛿 ,  using a generalized nonlinear least-squares method (Pinheiro 
and Bates, 2000) in which 𝜎  can be modeled as a function of covariates. The likelihood ratio 
statistics against the constant-𝜎  null hypothesis (equivalent to 𝑐  = 0) has a p-value of 0.02, 

indicating the null hypothesis can be rejected at the significance level of 0.05. The estimated 
𝑐  and 𝑐  of Model1.NO are tabulated in Table 3.1.  

 The number of earthquakes in the M > 7.5 range is insufficient to justify an unceasing 
downward trend of 𝜎  toward 0. Therefore, for forward application, we further impose a floor on 
the value of 𝜎  (a minimum 𝜎 ). We judge that 0.4, which is roughly the 𝜎  in the highest 
magnitude bin on Figure 3.6, is a reasonable floor on 𝜎 . Hence, the model for 𝜎  is revised to 
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𝜎  𝑚𝑎𝑥 𝑐  𝑒  ∗ 𝐌 . ,   , 0.4  (3.5)

We note that, in the ground-motion model of Chiou and Youngs (2008, 2014), between-
earthquake standard deviation (denoted as  in their papers) is also capped on the low end of M 
and floored on the high end of M. 

3.2.2.5 Predictive Distribution of Model1.NO  

The predictive distribution of the response variable 𝑙𝑛 𝐷 , 𝑙𝑛 𝐷 | 𝛿 , 𝜇, 𝜎  ~ 𝑁 𝛿  𝜇, 𝜎 , is 
a compound distribution because the location (mean) parameter 𝛿  𝜇 is itself a random variable 
taken from the normal distribution 𝑁 𝜇, 𝜎 . In forward application, if the value of 𝛿  cannot be 
pre-specified, we should treat 𝛿  as a source of aleatory variability. As such, the full range of 
𝛿  value should be considered when evaluating the predictive distribution of 𝑙𝑛 𝐷 , by either 
analytically or numerically integrating out 𝛿  while taking into account the probability density 
of 𝛿 .  The integration (or marginalization) over 𝛿 ~ 𝑁 0, 𝜎  leads to a distribution no longer 
conditional on 𝛿 . Note that these descriptions about the predictive distribution also apply to other 

random-intercept FDMs, where the normal distribution of response variable is replaced with a 
distribution pertinent to the particular FDM. 

 It is well known that the distribution resulting from compounding the normal 
distribution 𝑁 𝑚, 𝜎  with the normal distribution 𝑁 𝜇, 𝜎  of 𝑚 leads to another normal 

distribution 𝑁 𝜇, 𝜎 , where 

 𝜎 𝜎  𝜎  (3.6)

Another interpretation of compounding is that  𝑙𝑛 𝐷  is a continuous mixture of normal random 
variable 𝑦 ~ 𝑁 𝑚, 𝜎  for which the mean parameter 𝑚 is normally distributed. 

 The 0.05, 0.50, and 0.95 quantiles predicted by the compound distribution from 
Model1.NO are shown on Figure 3.7. The 0.95 quantile is smaller than P11’s, except for M around 
7 and for 𝑙2𝐿 ≤ 0.2.  Relative to P11, the adopted bilinear M relationship yields a steeper magnitude 
scaling for M < 7.1 (𝑚  is larger than the reported scaling rate of 1.7927 in P11) but a shallower 
scaling for M > 7.1 (𝑚 1.7927 . The latter, together with the M-dependent 𝜎 , render, in our 

opinion, a more reasonable model extrapolation for M > 8 that results in a 0.95 quantile more 
commensurate with the observed 𝐷  of past large earthquakes discussed in Section 3.2.1.2. 

 In addition to the sharp break near M = 7.1 (the hinge magnitude of bilinear M scaling 
relation for 𝜇), the M-dependent 𝜎  causes two gentle breaks in slope near M = 6.1 (reaching the 
floor on 𝜎 ) and M = 7.5 (reaching the cap on 𝜎 ). The along-trace variation (bottom panel of 
Figure 3.7) deviates slightly from an ellipse because of the 𝑙2𝐿 -dependence in 𝜎 .  

 The differences between Model1.NO and P11 noted in the last two paragraphs are due to 
the difference in regression data as well as the three formulation refinements implemented in 
Model1.NO. Similar differences are also noted for the other updates to be discussed later. To avoid 
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redundancy and save space, these observed differences will not be repeated in the following 
sections. All updates are summarily compared in Section 3.4.   

3.2.2.6 Residual Diagnostics  

Diagnostic plots of the residuals of Model1.NO are presented on Figure 3.8. Compared to those of 
the simple update on Figure 3.2, the standardized within-earthquake residuals from Model1.NO 
are closer to a standard normal distribution. However, the fit still has room for improvement; the 
residual histogram indicates a left-skewed distribution with a right tail thinner than that of the 
standard normal distribution. These deficiencies indicate that data trimming, as helpful as it can 
be, is not capable of turning non-normal data into a normal dataset.  

3.2.3 Model2.SN: Distributional Regression Using Skew‐Normal Distribution  

3.2.3.1 Skew-Normal Distribution 

Our second effort of handling data non-normality is to replace normal distribution by the three-
parameter SN distribution. SN distribution (Azzalini and Capitanio, 2014; Rigby et al., 2020, page 
378) is a generalization of normal distribution to introduce asymmetry to the probability density 
function. The parameters of SN distribution are denoted as 𝜇 (location parameter, real value), 𝜎 
(scale parameter, positive real value), and  (skew parameter, real value). The extra 
parameter   regulates jointly the skewness and the kurtosis of the SN distribution. 
When   approaches 0, SN distribution specializes to the normal distribution. A negative   yields 
a left-skewed distribution, and a positive   yields a right-skewed distribution.  As   approaches 
+, SN approaches the (positive) half normal distribution.  

 For simplicity, we use the same symbols for the distribution parameters of different types 
of distribution, but note that they have different interpretations, and they play different roles under 
different distributions. For example, 𝜇 and 𝜎 are the mean and the standard deviation of normal 
distribution, respectively. But in SN distribution, 𝜇 is not the mean, and 𝜎 is not the standard 
deviation.  

 The basic characteristics of the SN distribution (Rigby et al., 2020, Table 18.9 on page 
379) are related to the distribution parameters in the following ways: 

 Mean = 𝜇  𝜎 
√   ,  

 Standard deviation = 𝜎 1   

    , 

 Skewness sign    1   1 ,  

 Excess kurtosis  2 𝜋 3  1   1  
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As indicated in the above expressions, parameter   regulates not only the skewness and the 
kurtosis, but also the mean and the standard deviation.  In contrast, location parameter 𝜇 regulates 
only the mean. Scale parameter 𝜎 regulates both the mean and the standard deviation.   

 The probability density function (PDF) and the cumulative distribution function (CDF) 
from Rigby et al. (2020, Table 18.9 on page 379) are reproduced in Appendix C.1. These two 
functions are implemented in FORTRAN, and the source code is available from 
https://www.conservation.ca.gov/cgs/pfdha. Examples of the PDF and the CDF of SN distribution 
are shown in Section 3.4.  

3.2.3.2 GAMLSS Regression 

The mixed-effect model and estimation method used in the development of Model1.NO are not 
viable here because the underlying distribution is no longer the normal distribution. From this point 
on, we use the generalized additive model for location, scale, and shape (GAMLSS), whose 
estimation is carried out using R’s gamlss package (Stasinopoulos et al., 2017).  

 GAMLSS is an extension of the generalized additive model (Hastie and Tibshirani, 1990; 
Wood, 2017), which itself is an extension of the generalized linear model (McCullagh and Nelder 
1989). GAMLSS targets the complete distribution of the response variable, not just its mean 
parameter, as is the case of traditional linear model. The relations between the distribution 
parameter and a set of explanatory variables can be modeled in GAMLSS. As such, GAMLSS is 
often regarded as a distributional regression model (Kneib et al., 2021). The basic GAMLSS 
specification includes the following: 

 Probabilistic distribution of the response variable 

o GAMLSS can model distributions outside the exponential family of distribution, 
including the skew-normal, the skew-t, and the nEMG distributions used in this 
study.   

 For each distribution parameter, a link function that maps the nonlinear relation between a 
distribution parameter and its explanatory variables to a linear relation 

o In this study, log-link function is used for a positive-valued parameter (such as the 
scale parameter 𝜎 of the SN distribution), and identity link for a real-valued 
parameter (such as the 𝜇 and the  parameters of SN distribution). 

 The linear relation between the link-transformed distribution parameter (predictor, in 
GAMLSS parlance) and the explanatory variables  

o In our study, the explanatory variables are M and 𝑙2𝐿. We have not explored other 
covariates (such as soil condition and rupture complexity) that may have 
explanatory/predictive power on the distribution parameters.  
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o The linear relation may include parametric terms as well as nonparametric 
smoothing functions.  

o A parametric term may include random effects on intercept or slopes 

 The linear mixed-effect regression model described in Section 3.2.3.1 can 
be regarded as a member of GAMLSS. 

 Although random effects can be on both intercept and slopes in any of the linear relation 
for the distribution parameter, we allow only random intercept in the 𝜇 model. This restriction is 
necessitated by the difficulty of analytically marginalizing over random slopes. Analytic 
expression for distribution marginalized only over a normally distributed random intercept can be 
derived more easily, avoiding numerical integration altogether. We do recognize the scientific 
merits of having random effects on the scale and shape parameters. The resulting information, for 
example, may provide insights into potential relations between the complexity of a rupture and the 
observed level of variability in displacement. Such undertaking is not in the scope of this study.  

 The gamlss package provides three types of additive terms for modeling and estimating the 
random intercept of a GAMLSS. We prefer the gamlss.re function because it is built on the nlme 
package also used by Chiou and Youngs (2008, 2014) in GMM development. One limitation of 
gamlss, however, is that it supports only linear relations, while our model for 𝜇 is nonlinear in 
coefficient 𝑚 . Such limitation of the gamlss package is circumvented in this study by fixing the 
nonlinear coefficient 𝑚  to a specific credible value so that the resulting M-scaling relation is a 
linear function of the remaining coefficients; more discussions on the credible range of 𝑚  and the 
accompanying prediction uncertainty are given in Section 3.2.3.3 and Section 3.5, respectively. 

  Even though smoothing functions (such as loess and penalized smoothing spline) may be 
included, our model formulation is purely parametric, without smoothing terms.  However, we did 
use smoothing functions to guide the development of the functional forms of some distribution 
parameters. The outcomes are consistent with the findings through data binning; therefore, to save 
space, we omit presentations on the exploratory study of functional forms using smoothing 
functions. 

 The above paragraphs provide a short description of the structure of the GAMLSS used in 
our study. More information can be found in Stasinopoulos et al. (2017). The descriptions given 
here apply to all GAMLSS models covered in this Chapter. 

3.2.3.3 Models for 𝝁 , 𝝈, and   

Model of parameter 𝜇 is the same as that of Model1.NO given in Section 3.2.2.2 (Equation (3.2)).  
Here, we use the representative 𝑚  value of 7.1 for the purpose of describing the linearized model 
formulation for 𝜇.  The linearized 𝜇 model is  
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𝜇 𝐌 , 𝑥∗ 𝑐 𝛿 𝑚 𝐌 7.1
𝑚 𝑚

𝑐
 𝑙𝑛

1 𝑒  𝐌𝒊 .

2
𝑐 𝑥∗ 1  

(3.7)

 

Definitions of coefficients are given earlier below Equation (3.2). Coefficient 𝑐  is again set to 10.  

 For the scale parameter 𝜎, we use the log-link function and a linear predictor model 
with the explanatory variable 𝑙2𝐿   

 

𝑙𝑛 σ 𝑙𝑛 𝑐  𝑐 ∗  𝑙2𝐿 ,  

or  

σ 𝑐  𝑒 ∗ ,  

 

(3.8)

Equation (3.8) has the same algebraic expression as that of the within-earthquake variance model 
of Model1.NO (Equation (3.4)), but it models the scale parameter, not the variance of SN random 
variable. 

 The skew parameter  is modeled as a constant (that is, same for every observation),  

   𝑐  (3.9)

For the purpose of modeling the along-trace variation of variance, we could have introduced 𝑙2𝐿  

dependence into the  model, instead of the 𝜎 model. We decide not to do so because  regulates 
all four basic characteristics of the SN distribution; thus, having an 𝑙2𝐿 -dependent  would have 
incurred an 𝑙2𝐿 -dependent mean (which already depends on 𝑙2𝐿  via the 𝜇 model), skewness, and 

excess kurtosis. To keep it simple, we prefer having constant skewness and excess kurtosis, and 
thus the decision was not to include 𝑙2𝐿  dependence in the  model. 

3.2.3.4 Variance Model of Random Intercept 

As in Model1.NO, we use Equation (3.4) to model the variance 𝜎  of 𝛿 , , 𝑖 1, 𝑁   and 

regress for the two coefficients using the generalized nonlinear least-squares method. For forward 
application, we also recommend using Equation (3.5) with a floor of 0.4 on 𝜎 . The recommended 

model is shown on Figure 3.9. The estimated coefficients 𝑐 , 𝑐  are tabulated in Table 3.1 

3.2.3.5 Diagnostics of Model2.SN Using Normalized Quantile Residual 

The residual defined in Section 3.2.1.1, and the within-earthquake residuals defined in Section 
3.2.2.2 are useful for regression model that assumes a normal distribution for the response variable. 
Stasinopoulos et al. (2017, Section 12.2) suggest using the normalized quantile residual �̂�  (Dunn 
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and Smyth, 1996) for checking a GAMLSS model where a non-normal distribution is assumed for 
the response variable. 

 Normalized quantile residual is computed as follows. First, cumulative probability of an 
observed 𝑙𝑛 𝐷  value is computed using the estimated distribution parameters for that 

observation. The computed probability is then mapped to a standard normal variate through the 
quantile function (inverse of cumulative distribution function) of standard normal distribution. The 
normalized quantile residual of 𝑙𝑛 𝐷  is taken as the value of mapped standard normal variate 
and denoted by �̂� . Expressed in a compact form, the normalized quantile residual is defined as 

�̂�  F 𝑙𝑛 𝐷  | 𝜃  (3.10)

where 𝜃  is a vector containing the estimated distribution parameters for observation 𝑖, 𝑗 ; 
F 𝑙𝑛 𝐷  | 𝜃  is the cumulative probability function of 𝑙𝑛 𝐷  given 𝜃 ; and  .  is the 
inverse CDF of the standard normal distribution. The definition of �̂�  is general and applicable to 

other continuous distributions to be discussed later. If the estimated distributional model is correct, 
�̂�  will follow the standard normal distribution, aside from sampling variability. 

 Five diagnostic plots of the normalized quantile residuals are presented on Figure 3.10. The 
histogram and the Q-Q plot of �̂�  both reveal a slight deviation from the standard normal 

distribution, indicating that SN is a much better distribution than the normal distribution (as used 
in the simple update and Model1.NO) in characterizing the probabilistic distribution of tier-1 data. 
These observations also indicate that Model2.SN is an adequate model and additional flexibility is 
not crucially needed for tier-1 data. However, when we bring the tier-2 data back into regression 
analysis, the SN-based model struggles to fit them. Our aspiration to have a complete model for 
both tiers of data leads to the third update described below in Section 3.2.4. 

3.2.3.6 Predictive Distribution by Model2.SN  

Analogous to Model1.NO,  𝑙𝑛 𝐷  predicted by Model2.SN follows the distribution that results 
from compounding 𝑆𝑁 𝑚, 𝜎,   with the normal distribution 𝑁 𝜇, 𝜎  of 𝑚. This compounding 

may also be interpreted as a continuous mixture of SN random variable for which the location 
parameter is normally distributed. The compound distribution is the skew-normal 
distribution 𝑆𝑁 𝜇, 𝜎′,   (Arellano-Valle et al., 2005), where 

𝜎  𝜎 𝜎  
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 Example quantiles predicted by the compound distribution of Model2.SN are shown on 
Figure 3.11. They are somewhat different from those by Model1.NO (Figure 3.7), mainly due to 
the difference in assumed response distribution.  A more in-depth comparison of model predictions 
is given in Section 3.4.  

3.2.4 Model3.ST: Distributional Regression Using Skew‐t Distribution  

3.2.4.1 Skew-t Distribution 

In Model3.ST, the three-parameter skew-normal is replaced by the four-parameter ST distribution 
(Azzalini and Capitanio, 2014; Rigby et al., 2020, page 412); the extra parameter of ST distribution 
allows the proper modeling of both tiers of data. Although there are other types of probability 
distribution that also provide extra flexibility, we pick the skew-t distribution because it is a 
generalization of Student’s t distribution through a mathematical manipulation similar to that used 
in generalizing the normal to the skew-normal. Incidentally, including the tier-2 data actually 
yields better fit compared to the skew-t fitted to only tier-1 data.  

 Parameters of the skew-t distribution (as parameterized in the gamlss package) are denoted 
as 𝜇 (location parameter, real value), 𝜎 (scale parameter, positive real value),  (skew parameter, 
real value), and  (excess kurtosis parameter, positive real value). Basic characteristics of skew-t 
distribution are related to the distribution parameters in complex ways. These relations are 
reproduced below from Rigby et al. (2020, Table 18.25, page 413),  

 Mean =  𝜇 𝜎 𝛿 𝑏 , where 𝛿  
√ 

  and 𝑏  



 

 Variance = 𝜎 𝛿  𝑏 ) 

 

 Skewness = 𝜎 𝛿 𝑏 3 𝛿  𝑏 ) 𝛿 𝑏  - 𝛿 𝑏  / 𝜎 𝛿  𝑏 .  

 

 Kurtosis =  

𝜎 4  𝛿 𝑏   6 𝛿  𝑏 𝛿  𝑏   3 𝛿  𝑏 𝜎 𝛿  𝑏  3  

 

The PDF of the skew-t distribution are reproduced in Appendix C.2, and some examples are shown 
in Section 3.4.  In addition to the implementations in R (in the sn and gamlss.dist packages), skew-
t’s PDF is implemented by us using the FORTRAN language, and the CDF is computed via 
numerical integration of the PDF. The FORTRAN source code is available at 
https://www.conservation.ca.gov/cgs/pfdha. 
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3.2.4.2 Models for 𝝁, 𝝈, , and 𝝉 

Identity link is used for μ and , while log-link is used for σ and 𝜏.  The linear predictor models 
for 𝜇, 𝜎, and  are the same as those of Model2.SN; hence, they are not repeated here. Parameter τ 
is modeled as a constant as follows: 

τ   𝑐  (3.12)

Estimated coefficient values are tabulated in Table 3.1. 

3.2.4.3 Variance Model of Random Intercept 

As in Model1.NO and Model2.SN, standard deviation of 𝛿 , , 𝑖 1, 𝑁  is modeled as an 

exponential function of M, with a cap on the low end of M range and a floor on the high end of M 
range (Equation (3.5)).  The fitted 𝜎  model and 𝛿 ,  values are shown on Figure 3.12, and 

estimated coefficients 𝑐 , 𝑐  are tabulated in Table 3.1.  

3.2.4.4 Diagnostics of Model3.ST 

Diagnostic plots using the normalized quantile residuals of Model3.ST are presented on Figure 
3.13. These plots indicate that the ST distribution fits both tiers of displacement data quite well. 
Hence, we judge that further attempt to improve the current fit by introducing additional 
distribution parameters is superfluous.   

3.2.4.5 Predictive Distribution of Model3.ST  

Analogous to Model1.NO and Model2.SN,  𝑙𝑛 𝐷  predicted by Model3.ST follows the distribution 
that results from compounding 𝑆𝑇 𝑚, 𝜎, , 𝜏  with the normal distribution 𝑁 𝜇, 𝜎  of the 

location parameter 𝑚.  The predicted 𝑙𝑛 𝐷  can also be interpreted as a continuous mixture of ST 
random variable for which the location parameter of its distribution is normally distributed. We 
have not yet secured an analytic expression for the PDF of compound skew-t distribution.  For 
now, we rely on stochastic simulation to compute approximately the quantiles of the compound 
distribution of 𝑙𝑛 𝐷 .  For a given rupture scenario (specified in terms of M and 𝑙2𝐿), we take 50 
random samples of the mean parameter 𝑚 from the distribution 𝑁 𝜇, 𝜎 , and then 3,000 samples 

from the skew-t distribution 𝑆𝑇 𝑚, 𝜎, , 𝜏  for each of the 50 sampled 𝑚. A quantile of the 
compound skew-t distribution is taken as the corresponding quantile of the 150,000 skew-t 
samples.  

 Examples of quantiles predicted by the compound Model3.ST are shown on Figure 3.14. 
Overall, we do not see any feature or trend about their differences from P11’s predictions that we 
have not seen in Model1.NO and Model2.SN. 
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3.3 MODEL4.NEMG: DISTRIBTUIONAL REGRESSION USING NEGATIVE 
EXPONENTALLY MODIFIED GAUSSIAN DISTRIBUTION 

Model3.ST fits both tiers of displacement data well. We would have ended our model development 
and made Model3.ST our preferred model if not for the following shortcomings. Compared to the 
normal distribution, it is more difficult to interpret ST’s distribution parameters, and it is more 
time-consuming to numerically compute the CDF (Appendix C.2) and to compound the 
(conditional) ST distribution with the normal distribution of the latent (unobservable) random 
intercept (Section 3.2.4.5). In addition, ST distribution lacks a geological underpinning. The 
nEMG distribution improves on the ST distribution in these regards.  Development of the nEMG-
based FDM is presented in this Section. This model, Model4.nEMG, is our preferred model 
for 𝑙𝑛 𝐷  among the models described in this report.  

 In this Section, we first propose a connection between the stochastic representation of 
nEMG random variable and the complexity of surface rupture (Section 3.3.1). We then discuss 
nEMG’s probability distribution in Section 3.3.2. Regression relations for the three distribution 
parameters are presented in Section 3.3.3.  Estimation of the model coefficients is carried out using 
R’s gamlss package, and the results are given in Table 3.1. Estimated variance model of random 
intercept is presented in Section 3.3.4, and diagnostics of Model4.nEMG are presented in Section 
3.3.5. Finally, quantiles predicted from Model4.nEMG are presented in Section 3.3.6.     

3.3.1 Stochastic Representation of 𝒍𝒏 𝑫   

It is shown above that normal distribution is inadequate in modeling the observed 𝑙𝑛 𝐷 . Our 
search for a replacement distribution has so far been phenomenological, that is, not considering 
the mechanical process that generates the heavy left tail. Several studies (for examples, Scholz and 
Lawler, 2004; Martel and Shacat, 2006) suggested that interaction between adjacent segments in 
an earthquake results in tapering of surface displacement toward the interacting tip of each 
segment. We interpret such interior tapering as the main mechanism that generates the heavy left 
tail in the observed 𝑙𝑛 𝐷  distribution. Note that the exterior tapering toward the two rupture edges 
is already being modeled as part of the ellipse formulation for the location parameter. Based on 
the above, we propose that surface displacement in the absence of interior interaction effect be 
modeled by a normal variate 𝐺 and the tapering effects of interior interaction be modeled by 
subtracting an exponential variate 𝐸 from 𝐺; 𝐺 and 𝐸 are assumed to be independent. We thus have 
the stochastic representation 

 𝑙𝑛 𝐷 𝐺 𝐸 (3.13)

where 𝐺 ~ 𝑁 𝜇, 𝜎  and 𝐸 ~ 𝐸𝑥𝑝   are the independent normal and exponential components, 
respectively.  

 Geologically, the  parameter value is expected to be highly variable along the main trace 
because displacement taper occurs sporadically. The frequency of tapers (Manighetti et al., 2015) 
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and their along-trace locations differ between earthquakes, making  vary substantially between 
earthquakes. To keep FDM simple, we do not model these detailed complexities. Instead, we 
model the composite of the 29 selected strike-slip ruptures, which is expected to vary smoothly 
along the main trace. It should be noted that, via the composite, the taper’s frequency and location 
variabilities are captured, to the extent present in the FDHI data, by the estimated distributional 
model; analysts should be mindful of potential double counting such variability in forward 
application.   

 Probabilistically, subtracting the exponential variate 𝐸 helps transform the symmetric 
normal distribution to a left-skewed distribution, conforming to the observed left-skew distribution 
of 𝑙𝑛 𝐷 .   

3.3.2 nEMG Distribution 

The 𝐺 𝐸  random variate is not widely known, and to our knowledge, its probabilistic 
distribution has not been given a formal name. Its negative, (–G + E), is better-known and has a 
right-skewed distribution that has been named the exponentially modified Gaussian (EMG, or 
exGaussian) distribution (Lovison and Schindler, 2014; Gori and Rioul, 2019; Rigby et al., 2020). 
Prompted by this relation, we call the distribution of 𝐺 𝐸  the negative exponentially modified 
Gaussian distribution, or nEMG distribution for short. Its statistical characteristics, CDF, and PDF 
are readily derived from those of the better-known EMG distribution. 

 The three distribution parameters of the nEMG distribution are denoted by 𝜇 (the mean of 
Gaussian component, real value), 𝜎 (the standard deviation of Gaussian component, positive real 
value), and  (the mean and the standard deviation of exponential component, positive real value). 
The commonly used statistical measures are related to the distribution parameters as follows: 

 Mean = 𝜇 ,  

 Variance = 𝜎    1   
   , 

 Skewness 2 1  
  

.
, 

 Excess kurtosis  6 1  
   

 

Compared to the SN and ST distributions described earlier, the above relations are 
remarkably simple. The skewness is always negative because the nEMG distribution is left-

skewed. The skewness and excess kurtosis are regulated by the ratio 
  .  As  approaches zero, the 

statistical measures of nEMG variate tend toward those of its normal component 𝐺. Larger  yields 
a heavier left tail. The right tail of the nEMG distribution is not identical to the right tail of the 
normal distribution. 
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 Analytic expressions of the nEMG distribution’s PDF and CDF are given in Appendix C.3. 
A FORTRAN implementation of PDF and CDF is also included in Appendix C.3.  Example PDF 
and CDF are shown in Section 3.4.   

3.3.3 Models for  𝝁, 𝝈, and  

Model formulations for the three distribution parameters of the nEMG distribution are given as 
follows: 
 

       𝜇 𝐌 , 𝑥∗ 𝑐  𝛿 𝑓 𝐌 𝑓  𝑙2𝐿  

 𝛿 ~ 𝑁 0, 𝜎  

𝑓 𝐌  𝑚 𝐌 𝑚
𝑚  𝑚

𝑐
𝑙𝑛

1 𝑒  𝐌𝒊

2
 

𝑓  𝑙2𝐿 𝑐 𝑥∗ 1  

σ  𝑐   

  𝑐  𝑒 ∗ ,  

(3.14)

The model for 𝜇 is identical to that previously used in Model2.SN and Model3.ST; it is repeated 
here for completeness.  As in previous models, coefficient 𝑐  is set to 10. Coefficient 𝑚  is fixed 
to a credible value to linearize 𝑓 𝐌 . Here, we use 𝑚  = 7.1 as the representative value for the 
purpose of presentation. More discussions on the range of credible 𝑚 values are given in Section 
3.5.1.  

 Along-main-trace variation of the variance of 𝑙𝑛 𝐷) can be included via either σ or . 
Unlike Model2.SN and Model3.ST, we choose to model σ as a constant and model  as an 
exponential function of 𝑙2𝐿 , . This choice is rooted in the intuition that the Gaussian component 

represents a smooth (homogenous) rupture, hence a constant σ, whereas the exponential 
component reflects complexity associated with the interplay of interacting segments, hence an 
𝑙2𝐿 –dependent . A consequence of this modeling decision is that the skewness and kurtosis of 

the predicted nEMG distribution will vary with 𝑙2𝐿, and the predicted mean has two sources of 
along-main-trace variation, one from 𝜇 and one from .  

 Without an existing implementation of the nEMG distribution in the gamlss package, our 
regression is carried out using the EMG distribution (function exGAUS in the gamlss package) on 
the negative 𝑙𝑛 𝐷 . The regression results are then converted to those appropriate for 𝑙𝑛 𝐷  and 
tabulated in Table 3.1.  



 

52 

3.3.4 Variance Model of the Random Intercept of 𝝁  

Similar to the interim updates, the standard deviation 𝜎  of 𝛿 ,  is modeled as an exponential 

function of M, with a cap on the low end of M range and a floor on the high end of M range.  The 
fitted 𝜎   model and the 𝛿 ,  values are shown on Figure 3.15.  Estimates of the 𝜎   model 
coefficients are tabulated in Table 3.1. See Section 3.4 for a comparison of this 𝜎   model with 

those from the interim updates. 

3.3.5 Diagnostics of Model4.nEMG, Normalized Quantile Residual 

Plots of the normalized quantile residuals of Model4.nEMG are shown on Figure 3.16.   As 
mentioned earlier, when the estimated distributional model is appropriate, the model’s normalized 
quantile residuals follow the standard normal distribution. The histogram, the empirical CDF, and 
the Q-Q plots on Figure 3.16 all indicate that normalized quantile residuals closely follow the 
standard normal distribution. Hence, we conclude that Model4.nEMG is an appropriate model 
providing good (distributional) fits to the displacement data.   

3.3.6 Predictive Distribution 

Analogous to other interim updates, 𝑙𝑛 𝐷  predicted by Model4.nEMG follows the distribution 
that results from compounding 𝑛𝐸𝑀𝐺 𝑚, 𝜎,   with the normal distribution 𝑁 𝜇, 𝜎  of location 

parameter 𝑚.  The predicted 𝑙𝑛 𝐷  can also be interpreted as a continuous mixture of the nEMG 
random variable for which the location parameter of its distribution is normally distributed. It is 
straightforward to show that the compound distribution is again an nEMG distribution 𝑛𝐸𝑀𝐺 𝜇,

𝜎′,   where 𝜎′ 𝜎  𝜎 . 

 Quantiles predicted by the compound distribution of Model4.nEMG are shown on Figure 
3.17.  We notice large differences from the quantiles of P11, and these differences are generally 
consistent with those observed in the interim updates. Despite being redundant of earlier Sections, 
we again outline the observed differences below. The 0.95 quantile is much lower than P11’s, 
except for M near 7 and for 𝑙2𝐿  ≤ 0.2.  Compared to P11, the bilinear M scaling of Model4.nEMG 

has a steeper scaling for M < 7.1 (larger 𝑚 ) and a gentler scaling for M > 7.1 (smaller 𝑚 ); these 
differences in scaling rates are due to the different M-scaling formulations, regression methods, 
and regression datasets. The much smaller 𝑚 , together with the decreasing 𝜎  with M, result in 
a much lower 0.95 quantile prediction for M > 8. The M dependence of 𝜎   (which is not modeled 
in P11) is also responsible for two extra breaks in M-scaling slope near M = 6.1 (floor on 𝜎  ) and 
M = 7.4 (cap on 𝜎  ), in addition to the sharp break near M = 7.1 (the hinge magnitude 𝑚  of the 

bilinear M scaling relation). Finally, the predicted 𝑙𝑛 𝐷  profile is flatter than P11’s (smaller 𝑐 ). 
This difference in profile’s flatness appears to be related to slip amplitude differences between the 
two datasets near the rupture edges, not to model formulation. 
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3.4 COMPARISON OF INTERIRM AND PREFERRED MODELS 

So far five FDMs are developed using different combinations of tiered data and different 
distributions of response variable. A comparison of these models is presented in this Section to 
highlight their similarities as well as noticeable differences. 

 Table 3.1 provides a direct comparison of model coefficients of the 𝜇 parameter. Estimates 
of coefficients 𝑚 , 𝑚 , and 𝑐  are similar among models that assume non-normal distributions. 

 The estimated M-dependence of 𝜎   (coefficient 𝑐 ) is similar among the models in Table 

3.1, despite their differences in distribution assumption and data tier selection. The simple update 
(like in P11) does not include M-dependent 𝜎  in model formulation. For the purpose of 

comparison, we provide an estimate of 𝑐  for the simple update by regression on the average 
residual of individual earthquake (as defined in Section 3.2.1.4). The estimated 𝑐  for the simple 
update is less negative than the other models in Table 3.1. This outcome may be partially attributed 
to the use of linear M-scaling relation in the simple update, which results in a poorer fit to data 
and a larger scatter in the average residuals in the upper magnitude range. 

 Direct comparison of the coefficients of 𝜎 and  parameters is not meaningful because their 
roles differ among the different types of distribution. Comparing the PDF and the CDF of the 
compound distributions resulting from the various FDMs is more informative. Such comparison 
is made for several M and 𝑙2𝐿 0.2 on Figure 3.18.  Another comparison of the spread and shape 
of compound distributions is shown on Figure 3.19, where the predicted 5th, 50th, and 95th 
percentiles are plotted in dot charts for several M and several 𝑙2𝐿 values. The interim updates and 
the final model are almost identical in formulation; the main difference between them is in the 
choice of response variable distribution.  Hence, it is not unexpected that the predicted percentiles 
are similar among them. The larger model-to-model variation in the 5th percentile reflects the 
different shape of the left tail of assumed distributions.  

 From Figure 3.18, for the same M, the skewness of the compound distribution from 
Model4.nEMG is less negative at 𝑙2𝐿 = 0.5 than at 𝑙2𝐿 = 0, a feature resulting from the 𝑙2𝐿 -

dependence in , which affects the skewness. Also, for the same 𝑙2𝐿, skewness is less negative at 
M 5.8 (that is, distribution is more symmetric) than at M 8, a feature due to the M-dependent 𝜎′ of 
the compound distribution, which in turn induces M-dependence in skewness. These features are 
manifested on Figure 3.19, which shows that the (5th – 50th) interpercentile is wider than the (95th 
– 50th) interpercentile.  Similar features in skewness are also noted for Model2.SN and Model3.ST, 
but it is not as straightforward to pinpoint their causes. This is an advantage of the nEMG 
distribution over the other two distributions.  

 On Figure 3.20, we compare the predicted quantiles from six FDMs as a function of M at 
several site locations. Quantiles by P11 and the simple update are quite different from those by the 
three interim updates and the preferred model (Model4.nEMG). These differences are mainly due 
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to the improved formulations described in Section 3.2. Compared to model formulation, predicted 
percentiles are less sensitive to the choice of probability distribution.  

 In Tables 3.2 to 3.5, we tabulate the values of the predicted distribution parameters as well 
as five different percentiles of the predicted distributions, for four magnitudes and two along-trace 
locations. This is mainly for the convenience of users who implement our FDMs and would like 
to verify their implementations.   

 Although the three interim updates are valid FDMs for 𝑙𝑛 𝐷 , Model4.nEMG is our 
preferred model for the following reasons: 

 Intuitive connection to the rupture mechanism responsible for the left-skewed distribution 
of 𝑙𝑛 𝐷  (Section 3.3.1) 

 Simple interpretation of distribution parameters (Section 3.3.2) 

 Exceptionally good fit to 𝑙𝑛 𝐷  data (Section 3.3.3) 

 Ease of implementation afforded by the analytic expressions of CDF and PDF for both the 
conditional and the compound distributions of the predicted 𝑙𝑛 𝐷 .  

3.5 ASSESSMENT OF ESTIMATION UNCERTAINTY  

In this section, we assess the estimation uncertainty of the distribution parameters of 
Model4.nEMG. We also evaluate the effects of estimation uncertainty on the predicted quantiles.  
Assessment presented in this report is focused on the estimation uncertainty of M-scaling relation 
and the accompanying prediction uncertainty. 

3.5.1 Uncertainty in M‐Scaling 

To abide by the restriction of using linear parametric relation in GAMLSS, we fix the value of  𝑚  
(the hinge magnitude around which the change of scaling rate takes place) to linearize the non-
linear magnitude-scaling relation of the 𝜇 parameter. The resulting coefficient estimates are thus 
conditional on 𝑚 . Based on the analysis of Model1.NO, we learn that 𝑚  is negatively correlated 
with 𝑚 , whereas 𝑚  is critical to model’s extrapolation outside data’s upper M bound. 
Similarly, 𝑚  is negatively correlated with 𝑚 , whereas 𝑚  is critical to the extrapolation below 
data’s lower M bound. Thus, it is important to assess the credible range of 𝑚  and the sensitivity 
of predicted quantiles to the selected 𝑚 . 

 In the following, we first assess the credible range of 𝑚 , then conduct regression using 
each of the four 𝑚  values selected to span the assessed credible range. Prediction uncertainty is 
then evaluated using the four resulting models. We judge that, if needed, these models can be used 
in different branches of a PFDHA logic tree to represent the epistemic prediction uncertainty 
related to the estimation uncertainty in M-scaling. 
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3.5.1.1 Credible range of 𝒎𝟑 

The credible range of 𝑚  is assessed using estimation results of two sets of regression runs. The 
first set consists of only Model1.NO, where 𝑚  is estimated by the nonlinear mixed-effect 
regression on tier-1 data, assuming normality. The estimated 𝑚  of Model1.NO is 7.0621 and the 
reported standard error is 0.383.   

 The second set consists of multiple exploratory regression runs.  Each run uses a GAMLSS 
whose 𝜇 parameter is without the M-scaling term, 

 
𝜇 𝑥∗ 𝑐 , 𝑐 𝑥∗ 1  (3.15)

 

As such, the earthquake-specific random coefficient 𝑐 ,   subsume the fixed-effect of M as well 
as the earthquake-specific random effect 𝛿 , . We then fit the bilinear relation 𝑐 𝑓 𝐌  to 
𝑐 ,  using a least-squares regression to obtain an estimate of 𝑚 . Because the second set of 

regression runs is used mainly to guide the selection of the credible 𝑚  range, we ignore the 
estimation uncertainty of 𝑐 ,  in the least-squares regression. The exploratory regression is 

repeated for several combinations of probability distribution assumption and tiered data. The 
outcomes indicate that the 𝑚  estimates are remarkably stable, within the range of 7.07 to 7.09. 
The reported standard error of 𝑚  estimator is also remarkably stable, in the range of about 0.351 
to 0.383. Regression analysis of 𝑙𝑛 𝐷  and 𝑙𝑛 𝐷 , to be presented in Section 3.6.3, result 
in 𝑚  estimates and standard errors that are also within or close to the above ranges.  

 Based on the above results and assuming 𝑚  is a normal variate, we assess that its mean is 
7.1 (rounded up to the first decimal point for ease of memory) and its standard deviation is 0.35. 
This statistical assessment is subject further to the physical constraint discussed next. We find that 
the 𝑚  estimate is negative in value when the given 𝑚  is sufficiently large. As in GMM, we 
disallow oversaturation (negative 𝑚  leads to reversed scaling of 𝑙𝑛 𝐷  with M for 𝐌 𝑚 ). 
Furthermore, negative M-scaling is not supported by dynamic rupture modeling (Wang and 
Goulet, 2022).  The constraint of a positive 𝑚  demands a right truncation on the assessed normal 
distribution for 𝑚 . We find that 𝑚  estimate is close to zero when 𝑚  = 7.32. We thus recommend 
using 𝑚  = 7.32 as the right truncation point.  

 As 𝑚  approaches 6 (the lower M bound of our data) and falls below 6, estimation of 𝑚  
becomes less reliable, if not infeasible. In addition, as 𝑚  decreases, 𝑚  estimate increases above 
1.7927 (the M-scaling coefficient reported by P11) and renders an unreasonably large 95th 
percentile prediction that we have worked hard to eradicate. We thus conclude that a left truncation 
on 𝑚  distribution is warranted, but we have insufficient data to assess the left truncation point. 
Instead, as a general guideline, we caution against using a 𝑚 value smaller than 6.4, which is the 
mean minus two standard deviations of the untruncated 𝑚  distribution. There are two bases to 
support this guideline. First, the cumulative probability of 𝑚  = 6.4 is already small (~ 0.0227). 
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Secondly, the accompanying 𝑚  will result in large 95th percentile predictions for M > 8.3, which 
are hard to defend against the observed maximum displacements from currently available large-
M observations (Section 3.2.1.2) and the 10 to 20 m range of maximum simulated displacement 
from the dynamic rupture modeling of the M 8 to M 8.2 scenarios (Wang and Goulet, 2022).  

3.5.1.2 Prediction uncertainty induced by uncertainty in 𝒎𝟑 

We use four 𝑚 values to illuminate the prediction uncertainty induced by the epistemic uncertainty 
in 𝑚 . These four values are 𝑚  = 6.4, 6.75, 7.10, and 7.32, representing the mean minus two 
standard deviations, the mean minus one standard deviation, the mean, and the right truncation 
point of assessed 𝑚  distribution. For reference, we also include the over-saturation case of 𝑚  = 
7.45. We conduct regressions to estimate the remaining model coefficients, conditional on a 
particular 𝑚  value. The resulting M-scaling curves are shown on Figure 3.21. The coefficient 
estimates are listed in Table 3.6 (excluding the model based on 𝑚  = 7.45). Besides the model with 
𝑚  = 7.10 (that is Model4.nEMG), the remaining three models are named Model5.1.nMEG through 
Model5.3.nEMG.  Some discussions of this table and the resulting predictions are in order:  

 A large fraction of the variability in 𝑐  estimates is attributed to the different 𝑚  to which 
estimate is anchored (vertical lines on Figure 3.21).  

 Estimated coefficient  𝑐  (the semi-major axis length of the elliptical mean displacement 
profile) is not sensitive to the choice of 𝑚 . The model coefficients of 𝜎 and  parameters 
are also insensitive to the choice of 𝑚 . It makes sense that these 𝑚 -insensitive 
coefficients are not related to the M-scaling part of the model.  

 Coefficients of the 𝜎  model are also not sensitive to 𝑚 , except for the case of 𝑚  = 6.4. 

It is possible that poorer fit to large earthquakes by the 𝑚  = 6.4 M-scaling relation 
weakens the M dependence of 𝜎𝑒𝑞

2 . 

 The 𝑚  estimates are in the range of 0 (when 𝑚  = 7.32) to 2 (when 𝑚  = 6.4). This range 
is wide, yet conformed to the above-discussed constraints.  

 Predicted quantiles coalesce but splinter outside data’s M range (Figure 3.22). The 
splintering is a result of having wide ranging 𝑚  and 𝑚 . The coalescence within data’s M 
range is helped by the limited magnitude range of data and the relatively gentle curvature 
of 𝑓 𝐌 , with which the three M-scaling coefficients  𝑚 , 𝑚 , 𝑚  are able to trade off 
with each other to maintain a close fit to data.  

 So far, we have not discussed contributions from the estimation uncertainty of 𝑚  and 𝑚 . 
Estimation uncertainty of 𝑚  is non-negligible, and its contribution to the prediction 
uncertainty at smaller magnitude (𝐌  6.5) should be considered in PFDHA. The reported 
estimation uncertainty of 𝑚  is also non-negligible, but we judge that it does not need to 
be further considered because it is subject to the constraints discussed above. 
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 The four models with credible 𝑚  values cannot be distinguished by the test statistics 
provided by the GAMLSS modeling.  This indicates the challenge in assigning statistic-
based logic-tree weights for these alternative FDMs without adding more data outside the 
current data M range, either empirical or simulated.  Because of this, we do not attempt to 
assign statistics-based weighting to these models. If statistics-based weighting is desired, 
one option is to base the weighting scheme on the truncated normal distribution of 𝑚  after 
the left truncation point is adequately assessed. 

 Logic-tree weights for these models may also be assigned by experts via a solicitation 
process, which is outside the scope of this study. We judge that, with limited basis, model 
with  𝑚  = 6.4 should be given the lowest weight among the four models (say, a weight of 
0.1), and the remaining three models should be given equal weight (a weight of 0.3). 

3.5.2 Uncertainty of other coefficients 

We did not systematically assess the estimation uncertainty of model coefficients 
𝑐 , 𝑐 , 𝑐 , 𝑐 , 𝑐 , and 𝑐 .  However, we postulate that these sources of uncertainty are probably 
unimportant compared to that associated with the uncertainty in M-scaling. 

3.6 DISCUSSIONS 

3.6.1 Predicted Profile Shape of D: Vindication of Using Ellipse Equation for 
𝒍𝒏 𝑫  

The 𝜇 parameter of Model4.nEMG is assumed to follow an ellipse (the x* term). This functional 
form, which is the theoretical profile of D of a simple elastic crack model, has often been used to 
model observed D, but not 𝑙𝑛 𝐷 . P11 did not explain the rationale behind their choice of ellipse 
for use in one of their models for 𝑙𝑛 𝐷 . Here, we try to provide some justifications by assessing 
its reasonableness against the profile shapes of D from other displacement data published in 
previous studies. On Figure 3.23, the predicted median of 𝐷 by Model4.nEMG for an M = 7.5 
earthquake is plotted in linear y-scale against 𝑙2𝐿. The plotted profile does not resemble an ellipse. 
In addition to the different curvature toward rupture tips, the predicted profile (black curve) has a 
narrower top than that of the elliptical profile. Our predicted profile is closely matched by the 
hyperbolic tangent function 𝑐 𝑐 ∗ 𝑡𝑎𝑛ℎ 𝑐 ∗  𝑙2𝐿  used in the recent FDM study by Youngs 
et al. (2021) for rail transportation system.   

 The predicted median by Model4.nEMG can also be reasonably approximated by a 
trapezoid (red dashed curve), although not as well as the match by the tanh function described 
above. The good match by a trapezoid intrigues us because trapezoid is similar in shape to the 
(symmetric) slip profile of the small-scale yielding crack model (Kanninen and Popelar, 1985; 
Scholz, 2019, Section 1.1.4) where, roughly, displacements taper linearly toward the crack tips. In 
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addition, a near-linear slip taper is frequently observed in the slip profiles of earthquakes and faults 
(for examples, Scholz and Lawler, 2004; Manighetti et al., 2005). There are several theoretical 
explanations for the linear fault tip taper  (see, for example, Martel and Shacat, 2006). The 
similarity of predicted shape of D to that of the small-scale yielding crack model and to those 
observed in past earthquakes justify our use of the ellipse equation for 𝑙𝑛 𝐷 .    

 Unlike the crack models where theoretical displacement decreases to zero at the crack tips, 
our probability distribution of slip at the rupture tip spans a wide range of value, and at larger M, 
only values at the very far left tail are small enough to be considered zero.  As an example, at the 
rupture tip of an M 7.5 event, the predicted 5th, 50th, and 95th percentiles are about 0.04 m, 0.5 m, 
and 2 m, respectively. Such a wide range of percentiles may have multiple causes, related to both 
data and model inadequacy. Data inadequacy may include incompletely mapped rupture trace, 
uncertainty in rupture tip location, under-reporting of small displacements in field surveys, 
exclusion of zero displacement in regression. As one example of model inadequacy, a different 
type of probabilistic distribution, such as a zero-inflated distribution or a more heavily left-skewed 
distribution, maybe more suitable for modeling the slip near the rupture tip.   

3.6.2 Asymmetric slip profile 

The parameters 𝜇 and  of Model4.nEMG are symmetric about the midpoint of main trace 
(where 𝑙2𝐿 0.5 , which, in turn, leads to symmetric profiles of predicted mean and quantiles of 
D. This assumed symmetry often contradicts the asymmetric profile observed in individual 
earthquakes or the composite of similar-shape profiles (for example, Manighetti et al., 2005). 
While recognizing the prevalence of asymmetric profile in the FDHI data, we adopt the symmetry 
assumption for its simplicity in model formulation and regression, as well as its ease of use in 
forward application. Given that each earthquake in the FDHI database has different profile shape 
and random binary skew direction, it is reasonable to assume that their composite, after accounting 
for the fixed-effect M-scaling (𝑓 ) and the earthquake-specific random intercept (𝛿 ), can be 

adequately modeled by a symmetric function of 𝑙2𝐿 (in our study, the equation of an ellipse). 

 To verify this symmetry assumption, the normalized quantile residuals from 
Model4.nEMG are plotted against 𝑙2𝐿 in the top panel of Figure 3.24. Although these residuals do 
not show a visually detectable trend with 𝑙2𝐿, the fitted line has a slightly negative slope of –0.134 
with an estimation standard error of 0.06, yielding a p-value of 0.04. We attribute this weak linear 
trend to the fact that about 60% of our slip data come from right-skewed profiles. Out of curiosity, 
we replot the residual in the bottom panel of Figure 3.24, but this time we flip the orientation of 
left-skewed profiles so that profile of every earthquake is consistently skewed to the right. The 
replotted residuals show a clear linear downward trend. 

 Ignoring the slightly downward slope shown in the top panel of Figure 3.24, we conclude 
that our (spatially) symmetric model for 𝜇 is applicable when the skew direction of future slip 
profile is unknown a priori and treated as a binary random variate with equal probability. For cases 
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where profile’s skew direction can be reliably forecasted (such as from geomorphic analysis of 
paleoslip histories), one may want to use a FDM with an asymmetric model for 𝜇 to take advantage 
of the benefits afforded by an asymmetric profile shape. For illustration, we derive such a model 
using slip profiles that are consistently right-skewed (data shown on the bottom panel of Figure 
3.24). The formulation of the asymmetric 𝜇 is the same as Equation (3.14) except for the extra 
𝑙2𝐿 0.5  term: 

 

𝜇 𝐌 , 𝑙2𝐿 𝑐 𝛿 𝑚 𝐌 7.1
𝑚 𝑚

𝑐
 𝑙𝑛

1 𝑒  𝐌𝒊 .

2
𝑐 𝑥∗ 1  𝑐  𝑙2𝐿 0.5  

 

(3.16)

The linear 𝑙2𝐿 0.5   term, prompted by the linear residual trend revealed in the bottom panel 

of Figure 3.24, may not be the most flexible way to model the asymmetry of average profile, but 
it is the simplest among the formulations that we are aware of.  Estimated coefficients of this 
asymmetric FDM (Model6.nEMG) are tabulated in Table 3.1.  The weaker 𝑙2𝐿 -dependence in 

the  parameter is consistent with the previously mentioned notion that imposing slip-profile 
symmetry on observed asymmetric profiles enhances the 𝑙2𝐿  dependence.  

 The 50th and 95th percentiles predicted by the asymmetric model for an M 7.5 rupture are 
shown on Figure 3.25. The predicted percentiles differ noticeably from those predicted by 
Model4.nEMG (the symmetric counterpart) for locations away from the center of main trace.  

 In addition to the differences in predicted quantiles, the asymmetric model differs from the 
symmetric model in two other aspects. First, the asymmetric slip profile peaks near 𝑙2𝐿 0.4. 
Secondly, although the fault-tip tapers are also roughly linear (the left panel of Figure 3.25), the 
left taper is now steeper than the right taper.  

 To fully develop and document the above asymmetric FDM, including asymmetric 
model, epistemic uncertainty, and implementation in PFDHA, further efforts would be needed but 
are outside the scope of this report.  

3.6.3 Similarity between Different Stochastic Representations of Displacement  

In the FDMs of Youngs et al. (2003) and Moss and Ross (2011), D is represented as the product 
of a log-normal variate (𝐷  or 𝐷  and another random variate, which is either Weibull or 
gamma distributed 𝐷/𝐷  or beta distributed 𝐷/𝐷 . For the purpose of demonstrating the 
similarity between different stochastic representations, we will ignore the fact that different 
displacement metrics maybe used for D.  

 A casual glance at the three representations of 𝑙𝑛 𝐷 𝐺 𝐸),  𝐷  𝐷 ∗

 , and  𝐷  𝐷 ∗ , one may suggest that they are three very different 
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representations, but it is not so; they are actually similar when compared in the log-domain of D. 
For the convenience of subsequent discussions, we call them the 1st, the 2nd, and the 3rd 
representation, respectively. We also omit index i for earthquake and j for slip measurement in an 
earthquake.  

 The logarithmically transformed 2nd representation is 

 
𝑙𝑛 𝐷  𝑙𝑛 𝐷  𝑙𝑛 𝐷/𝐷  (3.17)

 

In Section 3.6.3.2 below, it is shown that the normal variate 𝐺 of the 1st representation is related 
to  𝑙𝑛 𝐷  of the 2nd representation in the following way, 

 
𝐺  𝑙𝑛 𝐷   𝐺 ,   (3.18)

 

and the 1st representation can be re-expressed as 

 
𝑙𝑛 𝐷 𝑙𝑛 𝐷   𝐺 ,  𝐸  (3.19)

 

In Equations (3.17) and (3.19), 𝑙𝑛 𝐷  is written as the sum of the common variate 𝑙𝑛 𝐷  and a 
different second variate. The second variate is 𝑙𝑛 𝐷/𝐷  in Equation (3.17) and 𝐺 ,  

𝐸  in Equation (3.19). The types of probability distributions of the second variates are different: 
𝑙𝑛 𝐷/𝐷  is either a log-transformed Weibull variate or a log-transformed gamma variate 
according to Youngs et al. (2003) and Moss and Ross (2011), while (𝐺𝑙2𝐿,𝑙𝑛𝐷𝑎𝑣𝑒 𝐸) is an nEMG 

variate.  We will show later in Section 3.6.3.3 the probability distribution of 𝑙𝑛 𝐷/𝐷  is 
matched well by the nEMG distribution, hence the 1st and the (log-transformed) 2nd representation 
are similar.  

 The same can be done for the 1st and the 3rd representations. After logarithmically 
transforming the 3rd representation, we have  

 
𝑙𝑛 𝐷  𝑙𝑛 𝐷  𝑙𝑛 𝐷/𝐷  (3.20)

 

In Section 3.6.3.2 below, it is shown that component 𝐺 of the 1st representation is related 
to 𝑙𝑛 𝐷   of the 3rd representation in the follow way, 

 
𝐺  𝑙𝑛 𝐷  𝐺 ,   (3.21)
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and the 1st representation can be re-expressed as  

 
𝑙𝑛 𝐷 𝑙𝑛 𝐷 𝐺 ,  𝐸  (3.22)

 

In Equations (3.20) and (3.22), 𝑙𝑛 𝐷  is the sum of the common variate 𝑙𝑛 𝐷  and a different 
second variate.  The second variate is 𝑙𝑛 𝐷/𝐷  in Equation (3.20) and 𝐺 ,  𝐸  in 

Equation (3.22).  The types of probability distributions of the second variates differ: 
𝑙𝑛 𝐷/𝐷  is a log-transformed beta variate according to Youngs et al. (2003) and Moss and 
Ross (20011), while 𝐺 ,  𝐸  is an nEMG variate. We show later in Section 3.6.3.3 that 

the probability distribution of 𝑙𝑛 𝐷/𝐷  is matched well by the nEMG distribution. Hence, the 
1st and the (log-transformed) 3rd representation are also similar.  

  

3.6.3.1  Magnitude-scaling relations of  𝒍𝒏 𝑫𝒂𝒗𝒆  and  𝒍𝒏 𝑫𝒎𝒂𝒙  

The ability to re-express nEMG distribution’s 𝐺 component in terms of 𝑙𝑛 𝐷  or 𝑙𝑛 𝐷  
hinges on their similarity in M-scaling relation. Using linear regression of 𝑙𝑛 𝐷  and 𝑙𝑛 𝐷  
data against the bilinear relation 𝑐 𝑓 , we demonstrate that such similarity indeed exists. The 
𝐷  data used herein are obtained using the envelop method (Haeussler, 2004), and 𝐷  is 
simply the maximum of measured 𝐷 at points along the main trace of an earthquake.  

For 𝑙𝑛 𝐷  of the FDHI database, we obtain 

 

𝑙𝑛 𝐷 ~ 𝑁  𝜇 ,   𝜎  

   𝜇  0.4761  0.8844 𝐌  7.0720  .  .   𝑙𝑛 1 𝑒 ∗ 𝐌 .  

 𝜎𝑙𝑛𝐷𝑎𝑣𝑒 0.7064 

 

(3.23)

For 𝑙𝑛 𝐷  of the FDHI database, we obtain 

𝑙𝑛 𝐷 ~ 𝑁  𝜇 ,   𝜎
 

 

   𝜇  1.2662  0.8989 𝐌  7.0641  .  .   𝑙𝑛 1 𝑒 ∗ 𝐌 .  

𝜎𝑙𝑛𝐷𝑚𝑎𝑥 0.7039 

 

(3.24)
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 The fitted 𝜇 , 𝜇 , and the 𝑐 𝑓  term of Model4.nEMG show similar M-scaling 

relations (Figure 3.26). Ignoring the slight difference in M-scaling rate, we may write 

 
𝜇  𝑐 𝑓 0.7642 (3.25)

 
𝜇  𝑐 𝑓 0.0065 (3.26)

 

which imply 

𝜇  𝜇  0.7707 (3.27)

 

The implied 1:1 relation between 𝜇 and 𝜇  is corroborated by the 𝑙𝑛 𝐷 /

𝐷  data shown on Figure 3.27, which exhibit a statistically insignificant upward trend with M.  
For reference, the average value of 𝑙𝑛 𝐷 /𝐷  is -0.8288, a tad more negative than 
the -0.7707 offset proposed in Equation (3.27). We have not found corroborating publications 
using different strike-slip dataset. Wells and Coppersmith (1994), who assumed a linear M-scaling 
relation, reported a scaling rate of 1.03 (± 0.08) and 0.90 (± 0.09) for 𝑙𝑜𝑔 𝐷  
and 𝑙𝑜𝑔 𝐷 , respectively; the estimation standard error is reproduced inside the parenthesis. 
The 𝑙𝑛 𝐷 /𝐷  values from the Wells and Coppersmith strike-slip earthquakes are also 
plotted on Figure 3.27. An upward trend with M can be visually detected, consistent with their 
reported scaling rates. For reference, Wells and Coppersmith (1994) also reported, for all styles of 
faulting, a rate of 0.82 and 0.69 for 𝑙𝑜𝑔 𝐷  and 𝑙𝑜𝑔 𝐷 , respectively.  

 Based on the above regression results for 𝑙𝑛 𝐷  , one may postulate that 
the 𝛿 , 𝑐 𝑓 𝐌  term (which is equal to 𝜇 𝐌𝒊, 𝑙2𝐿 0.5 ) can be a proxy of 

observed 𝑙𝑛 𝐷  , thus providing a much-needed physical interpretation for that term. To verify 
this postulate empirically, we plot the observed 𝑙𝑛 𝐷  against the 𝛿 , 𝑐 𝑓 𝐌  term 

of Model4.nEMG on the left panel of Figure 3.28.  They show a 1:1 relation with a 0.9863 
correlation coefficient, and the scatter around the 1:1 line has a small standard deviation of 0.2548.  

 Although the plot supports our postulate, we are still uncomfortable with it because the 
exceedance probability of predicted 𝛿 , 𝑐 𝑓 𝐌  is about 0.1 (cumulative probability of 

about 0.9), based on Model4.nEMG. To further illustrate this concern, on Figure 3.29, we plot the 
probability density functions  and several predicted percentiles along an M 7.2 rupture trace. The 
probability mass is about 0.1 between the predicted 0.999 quantile and the predicted 𝜇. Are the 
observed 𝑙𝑛 𝐷   data consistent with such a large exceedance probability? To shed light on this 
question, we use stochastic simulations to compute the probability of exceeding the realized 
maximum values taken from a given nEMG distribution. The simulations are carried out for 𝑙2𝐿
0.5 and for eight different sample sizes, ranging from 5 to 100 samples. To account for sampling 
variability, we repeat the calculations 100 times for each sample size. The results are shown on 
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Figure 3.30 as a function of sample size. With the sample size set to 100, the exceedance 
probabilities vary between 0.0001 and 0.0436, and their average is 0.0098, much smaller than the 
0.1 probability noted above. With the sample size set to 10, exceedance probabilities vary 
considerably between 0.0005 and 0.3783 and the mean probability is 0.0939, close to 0.1. This 
begs the question whether the size of sampled slip data that lead to the observed 𝐷   is around 
10. Definition of such sample size is non-unique; for the sake of argument, we take it as the number 
of slip measurements within a 1-km window centered at the location of observed 𝐷  . Using this 
definition, we find that the sample size of the majority of FDHI strike-slip earthquakes fall below 
10 (subplot on Figure 3.3030), indicating the 0.1 probability of exceedance is possible.  

 Summarizing the above discussions, the interpretation of 𝑐 𝑓 𝛿  as a proxy of 

observed 𝑙𝑛 𝐷   holds empirically, but one need to be mindful of the 0.1 probability of 
exceeding the observed 𝑙𝑛 𝐷  . Given the finite exceedance probability, the adequacy of 
normalizing 𝐷  to observed 𝐷  (the 3rd representation) warrants further investigation. Instead of 
being the proxy of observed 𝑙𝑛 𝐷  , our preferred interpretation of 𝑐 𝑓 𝛿  is that it 

corresponds roughly to the .90 quantile of 𝑙𝑛 𝐷  at a point. 

 Finally, we note that both 𝜎 and 𝜎 are not constant; they decrease with 
increasing magnitude, similar to the trend of the variance  𝜎  of 𝛿 ,  discussed earlier. The M-
dependent functional form of Equation (3.5) is also applicable to 𝜎 and 𝜎  and we have 

 
𝜎 𝑚𝑎𝑥 1.1747 𝑒 .  ∗ 𝐌 . ,   , 0.4   (3.28)

 

𝜎 𝑚𝑎𝑥 1.1391 𝑒 .  ∗ 𝐌 . ,   , 0.4   (3.29)

 

Such M-dependent variances have not been reported in previous studies using a non-FDHI 
database. 

3.6.3.2 Decomposing G Component  

Based on the above results, we can now re-express 𝐺 in terms of 𝑙𝑛 𝐷  or 𝑙𝑛 𝐷 .  
Remember that, from Equation (3.14), 𝐺 ~ 𝑁 𝑐 𝑓 𝑓 ,   𝜎  𝜎  𝜎 . Using the 

property 𝑋 𝑋  ~ 𝑁 𝜇  𝜇 , 𝜎 𝜎 , where 𝑋  ~ 𝑁 𝜇 , 𝜎  and  𝑋  ~ 𝑁 𝜇 , 𝜎  are two 
independent normal variables, we re-write 𝐺 as the sum  

 

𝐺  𝑙𝑛 𝐷  𝐺 ,   

𝐺 ,   ~ 𝑁  𝑓 0.7642 ,  𝜎  𝜎  𝜎  
(3.30)
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where 𝑙𝑛 𝐷  is independent of 𝐺 ,  .  The 1st representation is now re-expressed as    

 
𝑙𝑛 𝐷 𝑙𝑛 𝐷  𝐺 ,  𝐸  (3.31)

 

Similarly, we can re-write 𝐺 as the sum 

 

𝐺  𝑙𝑛 𝐷   𝐺 ,   

𝐺𝑙2𝐿,𝑙𝑛𝐷𝑚𝑎𝑥 ~ 𝑁  𝑓𝑙2𝐿 0.0065 ,  𝜎2  𝜎𝑒𝑞
2  𝜎𝑙𝑛𝐷𝑚𝑎𝑥

2  

 

(3.32)

and  

 
𝑙𝑛 𝐷 ln 𝐷  𝐺 ,  𝐸  (3.33)

 

Note that 𝐺 ,  𝐸  and 𝐺 ,  𝐸  are nEMG variates. 

3.6.3.3 Approximation of 𝒍𝒏 𝑫/𝑫𝒂𝒗𝒆  and 𝒍𝒏 𝑫/𝑫𝒎𝒂𝒙  by nEMG   

Although the second random variate in the 2nd and the 3rd representations has a probability 
distribution different from the nEMG distribution, it can be matched reasonably well by the nEMG 
distribution in the logarithmic domain. This claim will be demonstrated below. This indicates that 
all three representations likely yield similar predictive distributions, if the same slip dataset and 
compatible model formulations of distribution parameters are used in regression analysis.  

 We sample 10,000 realizations of a Weibull variate whose distribution parameters are taken 
from the 𝐷/𝐷  model of Moss and Ross (2011). We then fit an nEMG distribution to the 
logarithm of sampled values. This process is repeated for three different site locations: 𝑙2𝐿 = 0, 
0.35, and 0.5.  The goodness of match by the nEMG distribution is examined using histograms 
and Q-Q plots (Figure 3.31). These plots show that the nEMG distribution matches the logarithm 
of Weibull variate reasonably well. Noticeable mismatches are mainly at the far tails.   

 The same analysis is carried out for the gamma-distributed 𝐷/𝐷 , again using the 
distribution parameters from Moss and Ross (2011).  The histograms and Q-Q plots are shown on 
Figure 3.32. The plots again indicate that the nEMG distribution matches the logarithm of gamma 
variate reasonably well, and noticeable mismatches are mainly at the far tails.   

 Incompatible support of probability distribution between the logarithm of beta-distributed 
𝐷/𝐷  and (𝐺 ,  𝐸  imposes a rigid constraint on 𝐺 ,  that warrants some 

discussions. The distribution of the logarithm of beta variate is supported on (-, 0], 
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whereas 𝐺 ,  𝐸 , an nEMG variate, is supported on (-,).  To match the logarithm of 
beta, (𝐺 ,  𝐸  needs to be specialized to 𝐸 by degenerating 𝐺 ,  to a constant 
value of 0. That is, as a random variable, 𝐺 ,   has zero mean and zero variance. The latter 
entails 𝜎  𝜎  𝜎  0, but in practice a small non-zero value would also work, at the 

expense of a small probability mass for positive values.  

 Matched distributions at the three 𝑙2𝐿 locations are shown on Figure 3.33, for which the 
fitted variance of 𝐺 ,  is non-zero but small. Large mismatch by the nEMG distribution (or, 

more precisely, by 𝐸) again occurs primarily at the tails.  

 In a recent study, Moss et al. (2022) model the 𝐷/𝐷  of reverse earthquakes as a gamma 
variate, not as a beta variate. Using the distribution parameters of their 𝐷/𝐷  model, the 
logarithm of sampled 𝐷/𝐷  are matched well by the nEMG distribution. Because the logarithm 
of gamma-distributed 𝐷/𝐷  is supported on (-,), degeneration of 𝐺 ,  is not 

needed. The diagnostic plots of the matched distribution are shown on Figure 3.34. The matched 
nEMG density function extends beyond 𝑙𝑛 𝐷/𝐷  = 0, but it can be truncated at 0 and then 
renormalized.  

 

3.6.4 Probability Distribution of D  

In this section, we investigate the types of probability distribution that can be utilized to 
characterize the 𝐷 predicted by Model4.nEMG for 𝑙𝑛 𝐷 . Our approach is similar to that used 
earlier for stochastic simulation.  For a given rupture scenario, we take 10,000 random samples of 
𝑙𝑛 𝐷  from the predicted nEMG distribution, then fit positively-supported probability 
distributions to the realized D values. We limit the candidate distributions to those available in the 
gamlss.dist package (Chapter 19, Rigby et al., 2020). Therefore, our search is comprehensive, but 
by no means exhaustive. The above process is repeated for several M and 𝑙2𝐿. The fitted 
distributions are then ranked by their Akaike information criteria (AIC).  

 The simulation results show that distributions GB2 (generalized beta type 2), BCPE (Box-
Cox power exponential), BCT (Box-Cox t), and BCCG (Box-Cox Cole and Green) are often in 
the list of top-3 ranked distributions. These top-ranked distributions are either three-parameter or 
four-parameter distributions and have so far not been used for the modeling of D.   

3.6.5 Range of Model Applicability 

To understand how well our 𝜇 model extrapolates outside the magnitude range of the FDHI 
database, we turn to 𝑙𝑛 𝐷  and assess how well the 𝑙𝑛 𝐷 -M scaling relation of Equation 
(3.23) fits three other 𝐷  datasets that include extra 𝐷  data from M > 7.9 and M < 6.5 
earthquakes. This assessment is meaningful because 𝑙𝑛 𝐷  and 𝑙𝑛 𝐷  share the same M-
scaling relation of 𝑐 𝑓 . The success of this assessment is hinged on the assumption that 
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similarity in M-scaling between 𝑙𝑛 𝐷  of the new datasets and 𝑐 𝑓 , if exists, extends 
outside the M range of FDHI database.  We collect 𝐷  data from the following three sources: 

 Wells and Coppersmith (1994; WC94); 𝐷  and 𝐷  of surface displacement from 5.55 
≤ M ≤ 8.14 earthquakes 

 Wells and Youngs (2015; WY15); 𝐷  and M digitized from a plot on their 2015 SSA 
poster; roughly, 5.51 ≤ M ≤ 8.25 

 Anderson et al. (2021; AEL21); 𝐷  from 5.79 ≤ M ≤ 8.35 earthquakes 

Data used in Takao et al. (2013) are unavailable to us.   

 All collected 𝐷  data are from strike-slip earthquakes except for WY15, which are from 
all styles of faulting (we do not have information to identify strike-slip earthquakes). The 
calculation method of 𝐷  used in each data source may be different. Hence, for an earthquake 
common to multiple datasets, 𝐷  values from different data sources may be different. The 
magnitude assigned to a common earthquake may also differ between data sources. It is not a good 
idea to merge these datasets into a single dataset.  

 The 𝐷  from FDHI and the above three data sources are plotted on Figure 3.35, one data 
source per panel. For reference, the median 𝐷  predicted by Equation (3.23), and the strike-slip 
model of WC94 are also plotted on Figure 3.35. In addition, we fit bilinear M-scaling relation to 
the data from AEL21 and obtain 

 

ln 𝐷 0.5125 1.1662 𝐌 7.1361
1.1662 1.5500

10
ln

1 𝑒  𝐌 .

2
 (3.34)

 

Predicted median 𝐷  from Equation (3.34) is also plotted on Figure 3.35.  The 𝑚  estimate 
(1.5500) from the AEL21 dataset is much smaller than that from the FDHI database, due to the 
large differences between the two datasets in the M < 7 range.  In contrast, the estimated 
𝑚  (1.1662) is comparable to the 𝑚   estimates (Table 3.1) from the FDHI data. We do not fit 
bilinear relationship to the WY15 dataset because it contains earthquakes of all styles of faulting.  

 A novel feature of our FDM models (also Kuehn et al., 2022) is the bilinear M scaling of 
displacement, in which 𝑚  is substantially larger than 𝑚 . This feature is not always clearly 
present in the above three non-FDHI datasets of 𝐷 . As shown by Equation (3.34), the AEL21 
data hint at a bilinear scaling but the difference between their 𝑚  and 𝑚  is too small to provide a 
definite answer. Ignoring the fact that it contains earthquakes from every style of faulting, WY15 
dataset also hints at a bilinear relationship (as shown by their loess smooth), but again the 
difference between the two scaling rates is too small to provide a definite answer. WC94 data do 
not require a bilinear scaling.   
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 The four datasets examined here differ from each other, much more so in the M < 6.5 range 
than in the M > 7 range.  Resolving the 𝑚 discrepancy is a challenge, given the state of available 
𝐷  data. To reach a definite resolution, we will need additional earthquakes in the M < 6.5 range 
and, more importantly, 𝐷  being computed by the same method (or different but compatible 
methods).  

 In spite of the inconsistency noted in moderate magnitudes, the 𝑐 𝑓  term of 
Model4.nEMG is able to fit every 𝐷  dataset reasonably well in the M > 7 range. This is further 
illustrated by the data residuals (Figure 3.36).  In addition, the 𝑐 𝑓  from Model4.nEMG’s 
epistemic variants (models corresponding to the credible range of 𝑚 ) are sufficiently wide to 
cover the 𝑚  implied by the four 𝐷  datasets, as shown on Figure 3.37. 

 Based on the above discussions, we assess that the applicable range of our FDM is 6.0 
 𝑴 8.3. The 8.3 upper bound, which is 0.4 magnitude unit above the maximum M of FDHI 
strike-slip earthquakes, is based on the ability of Model4.nEMG and its epistemic variants to fit 
𝐷  data up to M 8.3.  Echoing the discussion in Section 3.5.1.2, when a moderate earthquake is 
the dominant seismic source in PFDHA, inclusion of estimation uncertainty in 𝑚 will be needed 
to reflect the lack of data. Broader epistemic uncertainty is also justified by the large observed 
discrepancy in 𝐷  noted above.  
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Table 3.1.  Coefficients of Interim Updates and Preferred Model. 
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Table 3.2.  Distribution Parameters and Percentiles Predicted by Model1.NO 

 



 

70 

Table 3.3.  Distribution Parameters and Percentiles Predicted by Model2.SN 
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Table 3.4.  Distribution Parameters and Percentiles Predicted by Model3.ST 
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Table 3.5.  Distribution Parameters and Percentiles Predicted by Model4.nEMG 
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Table 3.6.  Coefficients of nEMG Distributional Models, Conditional on Different Credible m3 
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Figure 3.1.  Quantiles of fault displacement (D) predicted by the simple update. (A) 
Displacement plotted versus magnitude (M). For comparison, quantiles predicted 
by the original Petersen et al. (2011, P11) elliptical model are plotted as dashed 
lines. (B) Displacement plotted against the normalized positon along the main 
trace 𝑙2𝐿 . For comparison, quantiles predicted by P11 (Petersen et al., 2011) are 
plotted as dashed curves. 

A 

B 
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Figure 3.2.  Residual diagnostic plots of the simple update to Petersen et al. (2011). 
Standardized residual 𝜖 𝜎⁄ , where 𝜖 = observed ln(D) – predicted mean of ln(D) and 
𝜎 = standard deviation of 𝜖, is used on this figure. (Top left) residuals versus 𝑙2𝐿 . 

Variable 𝑙2𝐿  is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 

𝑙 is the along‐main‐trace position of the data point, and 𝐿 is the length of the main 
trace. (Top right) residuals versus magnitude (M). (Middle left) histogram of 
residuals; probability density function (PDF) of the normal distribution fitted to the 
residuals is plotted as the red curve. (Middle right) empirical cumulative 
distribution function (CDF) of residuals; CDF of the  normal distribution fitted to the 
residuals is plotted as the red curve. (Bottom left) quantile‐quantile (Q‐Q) plot that 
compares the quantiles of standardized residuals against the quantiles of standard 
normal distribution; the solid red line passes through the 1st and the 3rd quartiles, 
and the shaded area denotes roughly the 0.95 confidence level if residuals are 
taken from the standard normal distribution. 
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Figure 3.3.  Data residuals of the simple update to Petersen et al., (2011), plotted versus 
magnitude (M). A residual is color coded according to the earthquake from which it 
is sampled.  Solid triangle marks the mean of residuals in a particular 

earthquake 𝜀 ̅  ∑ 𝜀 , where 𝑛  is the number of displacement 

measurements in earthquake i). The blue curve shows the result of a fixed‐effect 
regression of the bilinear M‐scaling function (function 𝑓  of Equation (3.2)) to all 
data residuals.  The red curve shows the result of a random‐intercept mixed‐effect 
regression, in which variation in the mean of individual earthquakes is modeled. 
The striking difference between these two fitted curves highlights the importance 
of proper weighting of individual earthquake afforded by the mixed‐effect 
regression.   
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Figure 3.4.  Within‐earthquake residuals of the simple update to P11 (Petersen et al., 2011), 
plotted against 𝑙2𝐿 . Variable 𝑙2𝐿  is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 
0.5) of the main trace, 𝑙 is the along‐main‐trace position of the data point, and 𝐿 is 
the length of the main trace. Within‐earthquake residual is approximately 
computed as (𝜀 𝜀̅  ) where 𝜀̅   is the mean of 𝜀  in earthquake i, as defined in 

the text and in the caption of Figure 3.3. To visualize the variation of mean residual 
along the main trace, a loess smooth to all of the within‐earthquake residuals is 
plotted as the red curve.  A separate loess smooth to the tier‐1 data residual is 
shown as the black curve. A comparison of these two loess smooths indicates that, 
relative to the tier‐1 smooth, the estimated mean is decreased by an average of 
about 17%, due to the inclusion of tier‐2 data. To assess its variation along the main 
trace, residual standard deviation (S.D.) in ten 𝑙2𝐿  bins are computed and tag onto 

the loess smooths. Relative to tier 1’s standard deviation, the standard deviation of 
residuals in an 𝑙2𝐿  bin is increased by an average of about 27% along the main 

trace, due to the inclusion of tier‐2 data.  Tier‐1 data’s residual standard deviation 
reveals a slight downward trend with 𝑙2𝐿 . An assessment of the 𝑙2𝐿 ‐dependence 

of residual standard deviation for teir‐1 data is shown in Figure 3.5.  
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Figure 3.5.  Within‐earthquake residuals of Model1.NO, plotted against 𝑙2𝐿 . Variable 𝑙2𝐿  is 

the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the along‐
main‐trace position of the data point, and 𝐿 is the length of the main trace. Solid 
red symbol marks the standard deviation of residuals in a particular 𝑙2𝐿  bin 

multiplied by 1.65.  Bin boundaries are shown as the vertical dotted lines. 

Exponential function 𝑒  and linear functions 𝑎  𝑎 𝑙2𝐿  are fitted to the 

bin standard deivations. The fitted exponential and linear functions, mutiplied by 
1.65, are shown as the blue and the red curves, respectively. 
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Figure 3.6.  Random intercept 𝛿 ,  of Model1.NO, plotted versus magnitude (M). Solid red 

circles mark the standard deviation of  𝛿 ,  in respective magnitude bins bounded 

by the vertical dotted red lines. The horizontal short‐dashed line marks the 
estimated 𝜎  assuming it is a constant.  The fitted M‐dependent 𝜎  model 

(Euqation (3.4)) is written in the top left corner of the figure and shown as the red 
dashed curve. The horizontal long‐dashed line indicates the imposed floor level of 
𝜎  in the large magnitude range. 
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Figure 3.7.  The 0.05, 0.50, and 0.95 quantiles (the 5th, 50th, and 95th percentiles in the figure 
title) of fault displacement (D) from the compound distribution of Model1.NO. (A) 
Quantiles versus magnitude M. (B) Quantiles versus the normalized position along 
the main 𝑙2𝐿 . Quantiles predicted by P11 (Petersen et al., 2011) are shown as the 
long‐dashed curves. 
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Figure 3.8.  Residual diagnostic plots of Model1.NO. Within‐earthquake (EQ) standardized 
residuals are used on this figure. (Top left) residuals versus 𝑙2𝐿 . Variable 𝑙2𝐿  is 

the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the along‐
main‐trace position of the data point, and 𝐿 is the length of the main trace. (Top 
right) residuals versus magnitude (M). (Middle left) histogram of residuals; 
probability density function (PDF) of the normal distribution fittted to the residuals 
is plotted as the red curve. (Middle right) empirical cumulative distribution function 
(CDF) of residuals; CDF of the normal distribution fitted to the residuals is plotted 
as the red curve. (Bottom left) quantile‐quantile (Q‐Q) plot that compares the 
quantiles of standardized residuals against the quantiles of standard normal 
distribution; the solid red line passes through the 1st and the 3rd quartiles, and the 
shaded area denotes roughly the 0.95 confidence level if residuals are taken from 
the standard normal distribution. 
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Figure 3.9.  Estimated random intercept 𝛿 ,  of Model2.SN, plotted versus magnitude (M). 

Solid red circles are the standard deviation of 𝛿 ,  in respective magnitude bins 

bounded by the vertical dotted red lines. The short‐dashed line marks the 
estimated 𝜎  assuming it is a constant.  The fitted M‐dependent 𝜎  model is 

shown as the red dashed curve; the model is also written in the top left of this 
figure. The long‐dashed line indicates the imposed floor level of 𝜎 . 
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Figure 3.10.  Residual diagnostic plots of Model2.SN. Within‐earthquake (EQ) normalized 
quantile residuals are used on this figure. (Top left) residuals versus 𝑙2𝐿 . Variable 

𝑙2𝐿  is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the 
along‐main‐trace position of the data point, and 𝐿 is the length of the main trace. 
(Top right) residuals versus magnitude (M). (Middle left) histogram of residuals; 
probability density function (PDF) of the normal distribution fitted to the residuals 
is plotted as the red curve. (Middle right) empirical cumulative distribution 
function (CDF) of residuals; CDF of the normal distribution fitted to the residuals is 
plotted as the red curve. (Bottom left) qunatile‐quantile (Q‐Q) plot that compares 
the quantiles of normalized quantile residuals against the quantiles of standard 
normal distribution; the solid red line passes through the 1st and the 3rd quartiles, 
and the shaded area denotes roughly the 0.95 confidence level if residuals are 
taken from the standard normal distribution. 
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Figure 3.11.  The 0.05, 0.50, and 0.95 quantiles (the 5th, 50th, and 95th percentiles in the figure 
title) of fault displacement (D) from the compound distribution of Model2.SN. (A) 
Quantiles versus magnitude M. (B) Quantiles versus the normalized position along 
the main trace 𝑙2𝐿 . Quantiles predicted by P11 (Petersen et al., 2011) are shown 
as the long‐dashed curves. 
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Figure 3.12.  Estimated random intercept 𝛿 ,  of Model3.ST, plotted versus magnitude (M). 

Solid red circles are the standard deviations of  𝛿 ,  in respective magnitude bins 

bounded by the vertical dotted red lines. The short‐dashed line marks the 
estimated 𝜎  assuming it is a constant.  The fitted M‐dependent 𝜎  model is 

shown as the red dashed curve; the model is also written in the top left of this 
figure. The long‐dashed line indicates the imposed floor level of 𝜎 . 
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Figure 3.13.  Residual diagnostic plots of Model3.ST. Within‐earthquake (EQ) normalized 
quantile residuals are used on this figure. (Top left) residuals versus 𝑙2𝐿 . Variable 

𝑙2𝐿  is the 𝑙2𝐿 (= 𝑙/𝐿  folded at the midpoint (𝑙/𝐿 = 0.5) of the main trace, 𝑙 is the 
along‐main‐trace position of the data point, and 𝐿 is the length of the main trace. 
(Top right) residuals versus magnitude (M). (Middle left) histogram of residuals; 
probability density function (PDF) of the normal distribution fitted to the residuals 
is plotted as the red curve. (Middle right) empirical cumulative distribution 
function (CDF) of residuals; CDF of the normal distribution fitted to the residuals is 
plotted as the red curve. (Bottom left) quantile‐quantile (Q‐Q) plot that compares 
the quantiles of normalized quantile residuals against the quantiles of standard 
normal distribution; the solid red line passes through the 1st and the 3rd quartiles, 
and the shaded area denotes roughly the 0.95 confidence level if residuals are 
taken from the standard normal distribution. 
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Figure 3.14.  The 0.05, 0.50, and 0.95 quantiles (the 5th, 50th, and 95th percentiles in the figure 
title) of fault displacement (D) from the compound distribution of Model3.ST. (A) 
Quantiles versus magnitude M. (B) Quantiles versus the normalized position along 
the main trace 𝑙2𝐿 . Quantiles predicted by P11 (Petersen et al., 2011) are shown 
as the long‐dashed curves. 
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Figure 3.15.  Estimated random intercept 𝛿 ,  of Model4.nEMG, plotted versus magnitude (M). 

Solid red circles are the standard deviations of 𝛿 ,  in respective magnitude bins 

bounded by the vertical dotted red lines. The short‐dashed line marks the 
estimated 𝜎  assuming it is a constant.  The fitted M‐dependent 𝜎  model is 

shown as the red dashed curve; the model is also written in the top left of this 
figure. The long‐dashed line indicates the imposed floor level of 𝜎 . 
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Figure 3.16.  Residual diagnostic plots of Model4.nEMG. Within‐earthquake (EQ) normalized 
quantile residuals are used on this figure. (Top left) residuals versus 𝑙2𝐿 . (Top 

right) residuals versus magnitude M. (Middle left) histogram of residuals; 
probability density function (PDF) of the normal distribution fitted to the residuals 
is plotted as the red curve. (Middle right) empirical cumulative distribution 
function (CDF) of residuals; CDF of the normal distribution fitted to the residuals is 
plotted as the red curve. (Bottom left) quantile‐quantile (Q‐Q) plot that compares 
the quantiles of normalized quantile residuals against the quantiles of standard 
normal distribution; the solid red line passes through the 1st and the 3rd quartiles, 
and the shaded area denotes roughly the 0.95 confidence level if residuals are 
taken from the standard normal distribution. 
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Figure 3.17.  The 0.05, 0.50, and 0.95 quantiles (the 5th, 50th, and 95th percentiles in the figure 
title) of fault displacement (D) from the compound distribution of Model4.nEMG. 
(A) Quantiles versus magnitude M. (B) Quantiles versus normalized position along 
the main trace 𝑙2𝐿 . For comparison, quantiles predicted by P11 (Petersen et al., 
2011) are shown as the long‐dashed curves. 
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Figure 3.18.  Comparison of compound distributions of fault displacement (D) from the models 
summarized in Table 3.1 and from Petersen et al. (2011) (P11). (Left) probability 
density functions (PDFs). (Right) cumulative distribution functions (CDFs) 
Calculations are carried out for ruptures of four different magnitudes (M), all at 
the same normalized position of 𝑙2𝐿 = 0.2.  
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Figure 3.19.  Comparison of the 0.05 (Q05), 0.50 (Q50), and 0.95 (Q95) quantiles of fault 
displacement (D) from the compound distributions of models summarized in 
Table 3.1 and from the Petersen et al. (2011) (P11). The rupture magnitude (M) 
and the site’s normalized position (𝑙2𝐿) are indicated in the panel title.  
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Figure 3.19.  (Continued). 
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Figure 3.20.  Quantiles of compound distribution of fault displacement (D) from the models 
summarized in Table 3.1 and from Petersen et al. (2011) (P11), plotted against 
magnitude (M).  Each panel is conditional on the quantile (Q05, Q50, and Q95 for 
the 0.05‐quantile, 0.5‐quantile, and 0.95‐quantile, respectively) and the 
normalized position along the main trace (𝑙2𝐿 = 0, 0.2, and 0.5) as indicated in the 
strip of each panel.    

 
 
  

M

D
m



10
4

103

10
2

101

10
0

10
1

102 l2L = 0
Q05

5 6 7 8

l2L = 0.2
Q05

l2L = 0.5
Q05

l2L = 0
Q50

l2L = 0.2
Q50

10
4

103

10
2

101

10
0

10
1

102l2L = 0.5
Q50

10
4

103

10
2

101

10
0

10
1

10
2

5 6 7 8

l2L = 0
Q95

l2L = 0.2
Q95

5 6 7 8

l2L = 0.5
Q95

P11 P11.Simple.Update Model1.NO Model2.SN Model3.ST Model4.nEMG



 

95 

 

Figure 3.21.  Magnitude (M)‐scaling relations of fault displacement models (FDMs) regressed 
using an 𝑚  fixed to one of the five different values indicated in the plot legend. 
These 𝑚  values are marked in this figure by the color‐coded vertical lines. For 
use as a reference for model comparion, the earthquake term (𝑐 𝑐 ,  ) 
obtained from a regression analysis of an exploratory FDM without the magnitude 
scaling term 𝑓  are plotted as the solid squares. Note that the five FDMs shown 
on this figure are based on the 𝑙𝑛 𝐷  data, not on the  𝑐 𝑐 ,    values from 

the exploratory FDM. 
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Figure 3.22.  Quantiles of compound distributions of fault displacement (D) from the four 
models listed in Table 3.6, plotted versus magnitude (M). The fixed 𝑚  value used 
in each model is indicated in the figure legend.  For reference, the quantiles from 
the model assuming 𝑚  = 7.45 are shown as the gray dashed curves. Each panel is 
conditional on the quantile (Q05, Q50, and Q95 for the 0.05‐quantile, 0.5‐
quantile, and 0.95‐quantile, respectively) and the normalized position along the 
main trace (𝑙2𝐿 = 0, 0.2, and 0.5) as indicated in the strip of each panel.  
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Figure 3.23.  Profile of median slip predicted by Model4.nEMG for magnitude (M) 7.5 The 
predicted median is fitted by three functions of 𝑙2𝐿 used in previous studies to 
characterize slip profile along the main trace.  The fitted curves are shown as 
dashed curves in red, magenta, and orange color for the symmetric isosceles 
trapezoid, hyperbolic tangent (tanh) function, and ellipse equation, respectively. 
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Figure 3.24.  Plots of normalized quantile residuals from Model4.nEMG. (Top) The horizontal 
coordinate is the original normalized distance 𝑙2𝐿 measured relative to the 
western end point of main trace. (Bottom) The horizontal coordinate is the 
normalized distance 𝑙2𝐿 after left‐skewed profiles are reflected. A linear function 
of 𝑙2𝐿 is fitted to the residuals in each panel and the fitted curves are shown as 
the dashed lines. 
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Figure 3.25.  Predicted quantiles of displacement (D) versus normalized position along the main 
trace (𝑙2𝐿), for a magnitude (M) 7.5 rupture. Black curves are computed from 
Mode4.nEMG, a spatially symmetric model. Red curves are computed from the 
spatially asymmetric Model6.nEMG. Note that the peak of predicted quantile 
from Model6.nEMG occurs near 𝑙2𝐿 = 0.4. 
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Figure 3.26.  The average (𝐷 ) and the maximum (𝐷 ) of observed displacements for each 
strike‐slip earthquake selected from the Fault Displacement Hazard Initiative 
(FDHI) database, plotted against magnitude (M). The fits by the bilinear function 
of M (Equations (3.23) and (3.24)) are shown as the red curve and the black curve 
for 𝐷  and 𝐷 , respectively. For reference, the M‐scaling relation 𝑐 𝑓  of 
Model4.nEMG is shown as the blue curve. 
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Figure 3.27.  Logarithm of the ratio 𝐷 /𝐷 , plotted against magnitude (M). The average 
(𝐷 ) and the maximum  𝐷  of observed displacements in an individual 
earthquake are obtained from two data sources. The blue circles are from the 
Fault Displacement Hazard Initiative (FDHI) database (Sarmiento et al., 2021), and 
the red circles are from Wells and Coppersmith (1994).  The average value of 
𝑙𝑛 𝐷 /𝐷  from each dataset is marked by the horizontal dashed line. 
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Figure 3.28.  (left) Logarithm of observed maximum dispalcement (𝑙𝑛 𝐷  versus the 

magnitude‐scaling term  𝛿 , 𝑐 𝑓  of Model4.nEMG. (right) Logarithm of 

observed avearge dispalcement 𝑙𝑛 𝐷  versus  𝛿 , 𝑐 𝑓  of 
Model4.nEMG. Both 𝑙𝑛 𝐷  and 𝑙𝑛 𝐷  have a 1:1 relation with the 

𝛿 , 𝑐 𝑓  term. The standard deviation of the scatter around the 1:1 line 

is 0.2548 and 0.2353 for 𝑙𝑛 𝐷  and 𝑙𝑛 𝐷 , respectively. 

  

-3 -2 -1 0 1 2

-3
-2

-1
0

1
2

eqi  c0  fM

ln
D

m
a

x


Correlation Coefficient =  0.9863

ln D max
1:1 line

-3 -2 -1 0 1 2

-4
-3

-2
-1

0
1

eqi  c0  fM

ln
D

a
ve


Correlation Coefficient =  0.9887

ln D ave
1:1 line
1:1 line, shfited by -0.7674



 

103 

 

 

Figure 3.29.  Predicted probability density function (PDF) of fault displacement (D) versus the 
normalized position along the main trace (𝑙2𝐿) of amagnitude (M) 7.2 rupture. 
The predicted PDF conditional on zero random intercept (𝛿 ,  = 0) is shown by 
the gray curve. The predicted mean of the Gaussian component (𝜇  (magenta 
square) falls between the predicted 90th and 95th percentiles of displacements. 
The predicted mean displacement (𝜇 ‐  , where  is the mean of the Exponential 
component) (blue square) falls below the 50th percentile, as expcted for a left‐
skewed distribution. For reference, the PDF of the compound distribution 
resulting from the marginalization over 𝛿  is shown as the red curve.   
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Figure 3.30.  Simulated exeedence probablty of sample maximum, plotted against sample size. 
Samples are taken from the predicted nEMG distribution for magnitude (M  7.3 at 
the normalized along‐trace location of 𝑙2𝐿 = 0.5, for eight different sample sizes. 
To account for sampling variability, sampling is repeated 100 times for each 
sample size. The red solid square marks the mean of exceedence probability over 
these 100 trials. (Inset) Histogram of the sample size of displacements, per 
earthquake, in Fault Displacement Hazard Initiative (FDHI) database that fall 
within a 1‐km‐wide spatial window centered at the location of observed 
maximum displacement (𝐷 . 
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Figure 3.31.  Matching the logarithm of Weibull‐distributed ratio of displacement (D) to 
average displacement (𝐷 , 𝐷/𝐷 , by the negative exponentially modified 
Gaussian (nEMG) distribution. (Left) Histogram of the logarithm of 
𝐷/𝐷  sampled from a Weibull distribution whose parameters, as shown in the 
panel title, are predicted by the 𝐷/𝐷  model of Moss and Ross (2011; MR11). 
The density function of the matched nEMG distribution is shown as the red curve. 
Parameters of the matched nEMG distribution are given in the plot legend. (Right) 
Quantile‐quantile plot that compares quantiles of the logarithm of 
sampled 𝐷/𝐷  versus the theoretical quantile of the matched nEMG 
distribution. 
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Figure 3.32.  Matching the logarithm of gamma‐distributed ratio of displacement (D) to average 
displacement (𝐷 , 𝐷/𝐷 , by the negative exponentially modified Gaussian 
(nEMG) distribution. (Left) Histogram of the logarithm of 𝐷/𝐷  sampled from a 
gamma distribution whose parameters, as shown in the panel title, are predicted 
by the 𝐷/𝐷  model of Moss and Ross (2011; MR11). The density function of the 
matched nEMG distribution is shown as the red curve. Parameters of the matched 
nEMG distribution are given in the plot legend. (Right) Quantile‐quantile plot that 
compares quantiles of the logarithm of sampled 𝐷/𝐷  versus the theoretical 
quantile of the matched nEMG distribution. 
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MR11;D D ave Model, l2L  = 0.35; Gamma(=2.4765, =0.4396)
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MR11;D D av e Model, l2L = 0.5; Gamma(=1.8294, =0.8936)

Logarithm of Randomly Sampled Gamma-Distributed D Dave

D
en

si
ty

-8 -6 -4 -2 0 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

nEMG(=0.8805, =0.527, =0.6863)

-8 -6 -4 -2 0 2

-8
-6

-4
-2

0
2

l2L  = 0.5

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

nEMG



 

107 

 

 

 

  

MR11;D D max  Model, l2L = 0; Beta(=0.713, =1.74)

Logarithm of Randomly Sampled Beta-Distributed D D max

D
en

si
ty

-8 -6 -4 -2 0 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

nEMG(=-0.0391, =0.01, =1.8306)

-8 -6 -4 -2 0 2

-8
-6

-4
-2

0
2

l 2L = 0

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

nEMG

MR11;D D max  Model, l2L  = 0.35; Beta(=1.02835, =1.089)
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Figure 3.33.  Matching the logarithm of beta‐distributed ratio of displacement (D) to average 
displacement (𝐷 , 𝐷/𝐷 , by the negative exponentially modified Gaussian 
(nEMG) distribution. (Left) Histogram of the logarithm of 𝐷/𝐷  sampled from a 
beta distribution whose parameters, as shown in the panel title, are predicted by 
the 𝐷/𝐷  model of Moss and Ross (2011; MR11). The density function of the 
matched nEMG distribution is shown as the red curve. Parameters of the matched 
nEMG distribution are given in the plot legend. (Right) Quantile‐quantile plot that 
compares quantiles of the logarithm of sampled 𝐷/𝐷  versus the theoretical 
quantile of the matched nEMG distribution.   
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Figure 3.34.  Matching the logarithm of gamma‐distributed ratio of displacement (D) to 
maximum displacement (𝐷 , 𝐷/𝐷  by the negative exponentially modified 
Gaussian (nEMG) distribution. (Left) Histogram of the logarithm of 
𝐷/𝐷  sampled from a gamma distribution whose parameters, as shown in the 
panel title, are predicted by the 𝐷/𝐷  model of Moss et al. (2022; MEA22). The 
density function of the matched nEMG distribution is shown as the red curve. 
Parameters of the matched nEMG distribution are given in the plot legend. (Right) 
Quantile‐quantile plot that compares quantiles of the logarithm of 
sampled 𝐷/𝐷  versus the theoretical quantile of the matched nEMG 
distribution.  
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MEA22;D D max  Model, l2L  = 0.35; Gamma(=1.02835, =1.089)
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MEA22;D D max  Model, l2L = 0.5; Gamma(=1.1635, =0.81)
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Figure 3.35.  Scatter plots of observed average displacement (𝐷  versus magnitude (M). 
(Top left) data from Wells and Coppersmith (1994; WC94); (Top right) data from 
Wells and Youngs (2015; WY15); all styles of faulting (SOF); (Bottom left) data 
from Anderson et al. (2021; AEL21); (Bottom right) Fault Displacement Hazard 
Initiative (FDHI) database (Sarmiento et al., 2021) used in this study. A loess 
smooth is calculated and plotted as solid black curve in each panel. For reference, 
three parametric models fitted to the datasets of WC94, FDHI, and AEL21 are 
shown as dashed curves in black, red, and blue color, respectively. 
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Figure 3.36.  Data residuals with respect to the 𝐷  ‐ magnitude (M) relation of Equation 
(3.23) developed using the average displacement (𝐷  data from the Fault 
Displacement Hazard Initiative (FDHI) database (Sarmiento et al., 2021). To help 
visualize the residual trend, the smooth curve fitted by the nonparametric, locally 
weighted (loess) regression on the data residuals is shown as the dashed curve. 
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Figure 3.37.  The magnitude‐scaling terms ( 𝑐 𝑓 ) from Model4.nEMG and its three 
epistemic variants, all vertically shifted by  0.7642 log units, are plotted against 
magnitude (M). For comparison, average displacement (𝐷  data from four 
different data sources (Wells and Coppersmith (1994; WC94); Wells and Youngs 
(2015; WY15); Anderson et al. (2021; AEL21) and Fault Displacement Hazard 
Initiative (FDHI) database (Sarmiento et al., 2021)) are plotted in four separate 
panels as the solid gray symbols. WY15 data include strike‐slip as well as other 
styles of faulting (SOF). 
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4 Example Hazard Applications 

We adopt the PFDHA framework established in P11. Hazard equations and component models are 
summarized in Appendix A. This chapter presents numerical implementations of hazard 
integrations and discusses how the new FDMs fit in the overall framework. We demonstrate the 
use of the new FDMs in hazard applications, including the sensitivity of hazard to epistemic 
uncertainties. Hazard curves from our preferred model, Model4.nEMG, are compared with those 
using the P11 model and the interim models described in Section 3.2.     

4.1 NUMERICAL IMPLEMENTATION FOR SCENARIO EVENTS 

In both PSHA and PFDHA, hazard integrations often are carried out numerically. For the example 
applications in this Chapter, we assume a given fault ruptures repetitively with similar magnitudes 
(i.e., the characteristic earthquake recurrence model), or the occurrence of earthquakes can be 
characterized by a catalog of scenario earthquakes, each of which has a specified magnitude, 
rupture location on the fault, and occurrence rate. Hazard equation for principal displacement, 
Equation (A.1) in Appendix A, can then be written in the summation form as: 

 
𝜆 𝐷 𝐷

𝛼 𝑚  𝑃 𝑠𝑟 0|𝑚  𝑃 𝐷 0 𝛥 , , 𝑧, 𝑠𝑟 0  𝑃 𝐷 0|𝑧, 𝑠𝑟 0  𝑃 𝐷 𝐷 | 𝑙 𝐿⁄ , 𝑚 , 𝐷 0  
(4.1)

 

where Nm is the total number of earthquakes in the catalog, mi is magnitude of the ith earthquake, 
and α(mi) is the annual rate of the ith earthquake. See Figure 2.1 and Appendix A for other 
parameters.  

  

The exceedance probability, 𝑃 𝐷 𝐷 | 𝑙 𝐿⁄ , 𝑚 , 𝐷 0 , is complementary of the CDF 
of the assumed probability distribution model for the principal displacement. Using the FDM of 
P11 as an example, the natural log of fault displacement, ln(D), is assumed to be normally 
distributed. The normal probability density function is 
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𝑁 𝑦; µ, 𝜎
1

√2𝜋𝜎
𝑒 µ  (4.2)

 

where y = ln(D), µ is the mean, and σ is the standard deviation of the normal distribution.  

 

Exceedance probability is  

𝑃 𝑌 𝑦 1 𝑁 𝑦; µ, 𝜎 𝑑𝑦 1
1

√2𝜋𝜎
𝑒 µ 𝑑𝑦 (4.3)

 

In our PFDHA FORTRAN code, this integration is achieved using FORTRAN’s built-in error 
function, which also works for the interim model, Model1.NO.   

 PDFs and CDFs for the skew-normal, skew-t, and nEMG distributions are presented, and 
their implementations in R and in FORTRAN are briefly explained in Appendix C. The skew-
normal and the nEMG distributions have been implemented in our PFDHA code and used in 
hazard calculations for the example applications described in Section 4.2. FORTRAN 
implementation for the skew-t distribution is yet to be incorporated into our PFDHA code. The 
FORTRAN source codes for PDF and CDF are not listed in Appendix C, but they can be 
downloaded from https://www.conservation.ca.gov/cgs/pfdha. FORTRAN code for PFDHA will 
be provided upon request.    

4.2 EXAMPLE APPLICATIONS 

Three simple scenario example applications are illustrated: the M 7.0 scenario used in P11, an M 
5.8 scenario used in the IAEA benchmarking study (Valentini et al., 2021), and a hypothetical M 
8.3 scenario. We also present hazard curves for a case with a seismic source logic tree developed 
by the IAEA for its benchmarking study (Valentini et al., 2021).  

 For illustrating the application of the new FDMs presented in Chapter 3, we limit the 
example sites to be on the mapped fault (𝛥 ,  = 0), and location uncertainty is not 
considered 𝑃 𝐷 0 𝛥 , , 𝑧, 𝑠𝑟 0 1 . Following the P11 implementation, the principal 

rupture is assumed to occur everywhere along the main trace of earthquake i (i.e., the 
term 𝑃 𝐷 0|𝑧, 𝑠𝑟 0  is 1). For all examples, only principal displacement is analyzed, and the 
Wells and Coppersmith (1993) probability of surface rupture, Equation (A.2) in Appendix A, is 
applied.  

 In the following, hazard curves for an on-fault site using our preferred FDM, 
Model4.nEMG, are presented and compared with those using the P11 model and two other interim 
models, Model1.NO and Model2.SN, presented in Chapter 3.       
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4.2.1 M 7.0 scenario example in Petersen et al. (2011) 

The scenario example in P11 was developed based on Hayward fault geometry and paleoseismic 
information. It was assumed that the fault ruptures repetitively with an M 7.0 earthquake occurring 
once every 140 years (annual rate of 7.14×10-3) and the site was located on the fault at l/L = 0.4055.  

In Figure 4.1, hazard curves calculated using the preferred model, Model4.nEMG, the P11 
bilinear with respect to 𝑙/𝐿  model, and two interim models (Model1.NO and Model2.SN) are 
compared. The new models predict larger displacement compared to the P11 bilinear model except 
at exceedance rate smaller than about 10-4, largely because the new bilinear M-scaling yields 
higher predicted displacement values for magnitudes around 7 as shown in Figure 3.7. The 
preferred model and the skew normal model (Model2.SN) produce similar hazard curves, with the 
Model2.SN curve slightly higher for all exceedance rates. Hazard curves from these two models 
are much steeper compared to the other two models that assume normal probability distribution of 
ln(D) for displacement greater than about 1 m, resulting in progressively smaller and therefore 
more realistic prediction of displacement at increasingly low exceedance rates. Among the three 
new models, Model1.NO produces shallower hazard curves and much larger displacement at low 
exceedance rates, consistent with the discussion in Chapter 3 that models that assume normal 
probability distribution have a biased upper tail that results in large upper quantile displacement 
predictions, which controls the hazard at low exceedance rate. As displacement approaches zero, 
hazard curves from all models converge to an exceedance rate (intercept on the vertical axis in 
Figure 4.1) that equals the product of the applied event rate (7.14×10-3), the probability 
term 𝑃 𝐷 0 𝛥 , , 𝑧, 𝑠𝑟 0  (assumed to be 1), the probability term  𝑃 𝐷 0|𝑧, 𝑠𝑟 0  
(assumed to be 1), and the probability term  𝑃 𝑠𝑟 0|𝑚  (≈ 0.865 from Equation (A.3) for m = 

7).    

4.2.2 M 5.8 scenario example in IAEA benchmarking study 

The M 5.8 scenario in the IAEA benchmarking study (Valentini et al., 2021) is developed based 
on fault geometry and activity data of the 5-km long Suizenji fault, a small cross fault near the 
Fudagawa fault zone that produced the 2016 M 7.0 Kumamoto earthquake in Japan. For this 
scenario, it is assumed that the fault ruptures repetitively with a M 5.8 characteristic earthquake at 
a mean rate of 23.3×10-5 events per year, and the site is located on the fault at l/L = 0.39.  

In Figure 4.2, hazard curves calculated using the preferred model, Model4.nEMG, the P11 
bilinear model, and the two interim models are compared. Compared to the P11 bilinear model, 
the new models predict lower displacement at all exceedance rates. This is because the bilinear 
magnitude scaling in the new models has a stronger magnitude scaling for small magnitudes 
resulting in lower predicted displacement values for the M 5.8 scenario, consistent with patterns 
shown in Figures 3.7, 3.11, and 3.17. Hazard curves from the new models have shallower slopes 
than the P11 bilinear model because of the larger variance of the random intercept depicted in 
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Figures 3.6, 3.9, and 3.15. Again, Model2.SN and Model4.nEMG yield similar hazard curves, with 
the nEMG hazard curve slightly lower and the amount of difference increases slightly as 
exceedance rate decreases.   

4.2.3 Hypothetical M 8.3 scenario 

Hazard curves for a hypothetical M 8.3 scenario were calculated to evaluate the extrapolation of 
the new nEMG model to large magnitudes. This example assumes that the M 8.3 earthquake 
repeats once every 2500 years (annual rate of 4×10-4), and the site is located at l/L = 0.4055 (same 
as the M 7 scenario discussed in Section 4.2.1). 

For context, the largest magnitude in the USGS ShakeMap BSSC2014 Scenario Catalog is 
8.2 (see https://earthquake.usgs.gov/scenarios/catalog/bssc2014/). The catalog was developed for 
the Building Seismic Safety Council to provide ground motions for the deterministic component 
of ground motion hazard analyses required in the seismic design codes. The catalog includes a 
representative subset of ruptures that are based on the same earthquake source models as the USGS 
2014 update of the National Seismic Hazard Model (Petersen et al., 2014). The M 8.2 scenario 
earthquake is on the southern San Andreas fault. Based on the Uniform California Earthquake 
Rupture Forecast, Version 3 (Field et al., 2013), the longest observed average paleoseismic mean 
recurrence interval (MRI) of all southern San Andreas fault sections is about 277 yr, and the 
longest model predicted MRI is 306 yr. The average moment rate for all fault sections ranges from 
9.89×1016 Nm/yr to 9.88×1017 Nm/yr, which corresponds to an MRI ranging from 2,266 yr to 
22,636 yr, respectively, assuming all energy is released by the characteristic M 8.2 earthquakes. 
This is not a realistic assumption because we know the southern San Andreas fault has ruptured 
more frequently with smaller magnitude earthquakes. Nevertheless, it is important to discuss 
hazard curves for large magnitudes because a comprehensive hazard analysis would include a more 
realistic magnitude frequency relation that necessitates the analysis of very large magnitudes.    

In Figure 4.3, hazard curves calculated using the preferred model, Model4.nEMG, the P11 
bilinear model, and the two interim models are compared. Differences in hazard curves obtained 
using different FDMs are amplified at such large magnitude, although the Model4.nEMG and 
Model2.SN curves are still very similar. These two models render much smaller displacement than 
P11’s bilinear model, which renders over 50 m of displacement at the exceedance rate of 10-5. The 
overall larger displacement from the P11 model reflects the earlier observation that the linear 
magnitude scaling does not extrapolate well to large magnitudes compared to bilinear magnitude 
scaling. With improved magnitude scaling and statistical analysis that considers earthquake to 
earthquake variability, the Model1.NO curve is improved compared to the P11 curve. However, it 
still yields seemingly unreasonably large displacement (never observed historically or in 
paleoseismic trenches from a single event) at low exceedance rate due to its normal assumption. 
In contrast, for such a large magnitude, the skew normal and the nEMG models render much more 
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reasonable displacement hazard. The nEMG model estimate is lower than the skew-normal model 
for all exceedance rates.  

4.2.4 Scenario examples with model epistemic uncertainty 

Estimation uncertainty in magnitude scaling and asymmetric slip profiles are discussed in Sections 
3.5.1 and 3.6.2, respectively. Hazard implications of these epistemic uncertainties are illustrated 
in this section using scenario examples.  

Section 3.3.3 states that the baseline nEMG model assumes m3 = 7.1 for bilinear magnitude 
scaling. Estimation uncertainty is assessed in Section 3.5.1, and the effect of assessed uncertainty 
on predicted displacement distribution is illustrated using three additional m3 values: 7.32, 6.75, 
and 6.40. In Figures 4.4a through 4.4c, hazard curves using these alternative m3 are compared for 
the three scenario examples discussed in Sections 4.2.1 through 4.2.3, respectively. Whereas 
alternative m3 values lead to hazard curves that are quite similar for the M 7.0 scenario (Figure 
4.4a), significant differences are observed for the M 5.8 and M 8.3 scenarios. In general, the choice 
of m3 will make significant differences for magnitudes away from the center of the data range and 
when the model is extrapolated beyond the data range, particularly when used for magnitude 
greater than about 8.0. For these situations, it is important to incorporate this epistemic uncertainty 
in hazard analysis (see Section 3.5.1.2).        

 The effect of asymmetric slip profile shape is illustrated in Figure 4.5a through 4.5d for the 
M 7.0 scenario, assuming a site on the fault at l/L of 0.5, 0.4, 0.3, and 0.1, respectively. The three 
alternative slip profiles include a symmetric profile that peaks at the center of the fault (i.e., l/L = 
0.5), an asymmetric profile that peaks to the left (with respect to the center), and an asymmetric 
profile that peaks to the right. These figures show that whether slip profile is assumed to be 
symmetric or asymmetric and whether an asymmetric profile peaks to the left or to the right of the 
center of fault trace have increasingly more substantial effect on estimated hazard curves as the 
site moves from the center of the fault trace toward the ends of the fault and as exceedance rate 
decreases.   

4.2.5 Example in IAEA benchmarking study with source uncertainty 

This section illustrates the application of the Model4.nEMG model for a benchmarking study case 
that involves a seismic source logic tree developed by the IAEA (Valentini et al., 2021) to account 
for epistemic uncertainty in earthquake magnitude and occurrence rate. Fault displacement hazard 
from the Futagawa fault zone at a fictitious site on the fault is calculated.  

In the IAEA source model, the Futagawa fault zone consists of three segments as shown in 
Figure 4.6a: the Futagawa, Uto, and Uto-Hanto-North segments (labeled as ①, ②, and ③, 
respectively). The candidate area or site is moved to be on the fault instead of what is shown in the 
figure. Hazard from Takano-Shirahata segment is ignored. The site is near the junction of the Uto 
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and Futagawa segments. Seismic activity on the Futagawa fault zone is characterized by 4 rupture 
scenarios involving a single segment rupture and 3 different combinations of multi-segment 
ruptures as shown in Figure 4.6b. The central magnitude and l/L values for each scenario are also 
shown in this figure.  

The central magnitude and the mean rate values for each scenario are indicated in Figure 
4.6c. Uncertainty in these values is implemented via the logic tree nodes and branches illustrated 
in the same figure. There are 3 magnitude branches and 3 rate branches, resulting in 9 end nodes 
for each scenario. Branch magnitude and rate values and weights for the Uto scenario are given as 
an example. For all scenarios, including the Uto scenario, magnitude uncertainty reflects a factor 
of 2 uncertainty in seismic moment, corresponding to an increase or decrease by 0.2 magnitude 
unit from the central values. Mean rate uncertainty is a factor of 3 above or below the central 
values. Branch weights for other scenarios are similar to the Uto scenario. That is, for both 
magnitude and rate, the central branch is weighted 60% and the upper and lower branches are 
weighted 20% each, respectively. The logic trees for the four scenarios are additive and not 
alternative (i.e., branch weights for each scenario add to 1). The total hazard is the sum of hazards 
from the four scenarios. 

 Figure 4.7a shows the mean and percentiles of fault displacement hazard curves using only 
the Model4.nEMG model. Simulated mean and percentile hazard curves are calculated using 
Monte Carlo simulation. The Monte Carlo sampling includes two steps. In the first step, 10,000 
hazard curves are sampled for each scenario from its 9 logic-tree end-node hazard curves. The 
number of times each hazard curve is sampled is determined by its logic tree weight. In the second 
step, 10,000 total hazard curves are obtained by randomly selecting one hazard curve from each 
of the 4 scenario samples and adding them up. Logic-tree weights need not be considered in the 
summation because hazard curves in the scenario samples are already proportioned based on logic-
tree weights in the first step. Finally, the 10,000 total hazard curves are ranked and percentile 
values determined at each displacement level.  

The simulated mean recovers the calculated mean well as seen in Figure 4.7a, implying 
adequate sampling. Uncertainty range is quite large. The 5th to 95th percentile hazard ranges from 
7×10-5 to 4×10-4 at the 10-cm displacement level and from about 1.8×10-5 to 8×10-4 at the 1-m 
displacement level. The mean displacement is approximately 0.35 m, 2.5 m, and 6.0 m at 
exceedance rates of 10-4, 10-5, and 10-6 respectively. The uncertainty ranges in these hazard curves 
reflect alternative magnitude and event rate values given by the logic tree shown in Figure 4.6c, 
which only covers part of the sources of epistemic uncertainty. One would expect an even large 
range if other uncertainties were considered, for example uncertainties in FDMs (i.e., using a range 
of models), in magnitude-frequency distribution, and in the estimation of surface rupture 
probability.      

The mean hazard curve using the P11 bilinear model is shown for comparison (labeled P11 
Bilinear) in Figure 4.7a. The P11 model produces higher total mean hazard compared to the 
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Model4.nEMG model, particularly at low annual exceedance rates mainly because of its normal 
probability assumption with larger standard deviation.   

Figure 4.7b plots mean hazard curves from each of the four scenarios and the total mean 
hazard curves. The small and more frequent Uto scenario contributes the most to the total hazard 
at hazard level higher than about 10-5, below which the controlling scenario is the M 7.2 scenario 
that involves all three segments of the Futagawa fault zone rupturing together.  

For comparison, total and scenario hazard curves from P11 bilinear model are also plotted 
on Figure 4.7b. P11 hazard curves are higher than the nEMG curve for Uto M 6.5 scenario, but 
lower than the corresponding nEMG curves for the other three larger magnitude scenarios, 
resulting in coincidently comparable total hazards from these two models at small exceedance 
rates. At larger exceedance rate, the P11 model produces overall higher total hazards.   

 Note in Chapter 3 we recommend adding epistemic uncertainty in m1 when the dominant 
source is M < 6.5.  This is not done in examples shown in this chapter to keep these examples 
simple and to make comparisons of hazard results from different FEMs easier.  
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Figure 4.1.  Comparison of hazard curves for the magnitude (M) 7.0 scenario earthquake using 
the preferred negative exponentially modified Gaussian (nEMG) model 
(Model4.nEMG), the Petersen et al. (2011) bilinear model (P11 Bilinear), and two 
interim models (Model1.NO and Model2.SN). P[sr≠ 0|m] is the probability of 
having surface rupture (i.e., sr ≠ 0) given that a magnitude m earthquake occurs. 
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Figure 4.2.  Comparison of hazard curves for the M 5.8 scenario earthquake using the 
preferred negative exponentially modified Gaussian (nEMG) model, the Petersen 
et al. (2011) bilinear model (P11 Bilinear), and two interim models (Model1.NO 
and Model2.SN). 
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Figure 4.3.  Comparison of hazard curves for the hypothetical magnitude (M) 8.3 scenario 
using the preferred negative exponentially modified Gaussian (nEMG) model, the 
Petersen et al. (2011) bilinear model (P11 Bilinear), and two interim models 
(Model1.NO and Model2.SN). 
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Figure 4.4.  Hazard curves showing effects of alternative m3 values in models using negative 
exponentially modified Gaussian (nEMG) distribution. (A) Magnitude (M) 7.0 scenario 
in Petersen et al. (2011). (B) M 5.8 scenario example in International Atomic Energy 
Agency (IAEA) benchmarking study (Valentini et al., 2021). (C) Hypothetical M 8.3 
scenario. 
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Figure 4.5.  Hazard curves showing effects of alternative assumptions for along‐strike slip 
distribution using the magnitude (M) 7.0 scenario as an example. (A) l/L = 0.5. (B) 
l/L = 0.4. (C) l/L = 0.3. (D) l/L = 0.1. Variable l is the along‐main‐trace position and L 
is the length of the main trace (see Figure 2.1). 
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Figure 4.6.  Example in the IAEA benchmarking study with source model logic tree 

(modified from Valentini et al., 2021): A. Three segments of the Fudagawa fault 
zone; B. Rupture scenarios; and C. Source logic tree with epistemic uncertainty in 
magnitude and event rate. 
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Figure 4.6.  Example in the International Atomic Energy Agency (IAEA) benchmarking study with 
source model logic tree (modified from Valentini et al., 2021). (A) Three segments of 
the Fudagawa fault zone. (B) Rupture scenarios. (C) Source logic tree with epistemic 
uncertainty in magnitude and event rate. M is earthquake magnitude; l is the along‐
main‐trace position, and L is the length of the main trace (see Figure 2.1). 
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Figure 4.7.  Comparison of Petersen et al. (2011; P11) bilinear and negative exponentially modified Gaussian (nEMG) hazard curves 
for a site on the Fudagawa fault zone in Japan. Calculated mean hazard curve is the sum of weighted mean of all 
scenario curves. (A) Mean and percentile hazard curves. (B) Scenario and total hazard curves. M is earthquake 
magnitude.   
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5 Summary and Future Work 

5.1 SUMMARY 

This report documents the development of several fault displacement models (FDMs) for strike-
slip surface rupture as results of our effort to update the FDM in Petersen at al. (2011, P11). These 
models predict the probabilistic distribution of aggregated principal net displacement across a main 
surface rupture trace. The response variable in these FDMs is the natural logarithm of the 
aggregated principal displacement, ln(D). Predictor variables include moment magnitude (M) and 
normalized location (𝑙/𝐿 or 𝑙2𝐿) along the main rupture trace, which is developed from mapped 
rupture traces in ArcGIS using the least-cost path (LCP) analysis approach. As is done in P11 and 
in Chen and Petersen (2019), the aggregated displacement can be partitioned to subparallel fault 
traces in hazard application.  

 A simple update of P11 (Model0.NO), three interim updates (Model1.NO, Model2.SN, and 
Model3.ST) using different assumed probability distributions for ln(D), and the preferred model 
(Model4.nEMG) are presented in Chapter 3. Through residual diagnostics of the simple update, 
we identify several crucial refinements to P11’s formulations, and these refinements are 
incorporated into the three interim updates and the preferred model. Model1.NO includes these 
refinements, while maintaining P11’s normal probability distribution assumption. Efforts to handle 
the observed non-normal distributions of model residuals lead to the adoption of skew normal and 
skew-t distributions in Model2.SN and Model3.ST, respectively. These two non-normal 
distributions have increasingly larger flexibility in regulating the shape of their density functions 
to improve fits to non-normal distribution of slip data, at the cost of less interpretability of 
distribution parameters and higher complexity in forward application. Our preferred model 
(Model4.nEMG) largely avoids such sacrifices. The interim models and the preferred model 
predict similar quantile displacements, and their upper (95th) percentile displacement predictions 
are more physically reasonable compared to those by P11 and by the simple update of P11 (which 
is without the benefits of model reformulations). Furthermore, the 95th percentile displacements 
predicted by our models are commensurate with the observed maximum displacement from several 
large historically observed surface rupture earthquakes. We judge that the interim updates are valid 
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models and can be used as alternatives in PFDHA to account for the epistemic uncertainty in the 
choice of probability distribution, if needed.   

 We investigate epistemic uncertainty in the M-scaling with displacement and provide three 
alternatives of Model4.nEGM conditional on three different m3 values: 6.4, 6.75, and 7.32, in 
addition to the m3 = 7.1 in Model4.nEMG. These alternative FDMs (Model5.1.nEMG, 
Model5.2.nEMG, and Model5.3.nEMG) can be incorporated via a logic-tree approach to model the 
uncertainty in M-scaling in hazard analysis. When the dominant rupture source is of magnitude 
(M) < 6.5, due to insufficient earthquakes in such magnitude range in the FDHI database to 
constrain the M-scaling, we also recommend inclusion of an additional uncertainty in the M-
scaling rate of lower magnitudes (the coefficient 𝑚 ) to reflect the statistical estimation uncertainty 
of 𝑚 . 

Like the P11 model, the interim models and Model4.nEMG assume a symmetric along-
strike slip profile about the rupture middle point (l/L = 0.5). Model6.nEMG extends the preferred 
model to account for asymmetric slip profile in future rupture. In PFDHA, a hazard analyst can 
choose to use Model4.nEMG, Model6.nEMG (if the along-strike profile skew direction is known), 
or both models and skew directions via a logic tree to account for uncertainty in the skew-direction 
of future slip profile. 

Comparisons of FDMs are given in Section 3.4, including reasons for preferring 
Model4.nEMG over other non-normal models. To reiterate, the reasons are as follows: (1) intuitive 
connection to the rupture mechanism responsible for the left-skewed distribution of ln(D) data, (2) 
simple interpretation of distribution parameters, (3) better fit to ln(D) data compared to interim 
models, and (4) analytic expressions of CDF and PDF, for both conditional and compound nEMG 
distributions, allow for a relatively straight-forward implementation in engineering applications.  

The applicable magnitude range of our models is from M 6 to M 7.9, based solely on the 
magnitude range of data used in our models. However, analysis of 𝑙𝑛 𝐷  (treated as a surrogate 
of 𝑙𝑛 𝐷  from non-FDHI data sources indicates that the M-scaling of our models adequately 
captures 𝑙𝑛 𝐷  in the range of 7.9 < M ≤ 8.3. This can potentially serve as a basis for extending 
the upper bound of applicable range to M 8.3 in hazard analysis. 

Hazard applications of our models are demonstrated in Chapter 4 in the PFDHA framework 
established in P11. Hazard curves based on P11, interim, and the preferred models are compared 
and utilized to further illustrate the effects of FDM formulation, assumed probability distribution, 
epistemic uncertainty in M-scaling relation, and other assumptions adopted in our models.     

5.2  POTENTIAL MODEL IMPROVEMENTS 

Throughout Chapter 3, we mentioned potential future improvements to Model4.nEMG and topics 
that warrant further investigation. These include the following:  
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 Further investigation in the random effects on the scale and shape parameters of assumed 
probability distribution, which may provide insights into potential relations between 
rupture complexity and the observed level of variability in slip profile (section 3.2.3.2). 

 Determination of the left truncation point of m3 so that its truncated normal distribution can 
be used in developing logic tree branches and associated weighting schemes in hazard 
analyses to account for the epistemic uncertainty of predicted distribution of displacement 
due to the epistemic uncertainty in estimating m3 (Section 3.5.1.2). 

 Further development of along-strike asymmetric FDMs (Model6.nEMG), including along-
strike asymmetry of  parameter, epistemic uncertainty in M-scaling, and implementation 
in PFDHA (Section 3.6.2). 

 Resolution of discrepancy in m1 in existing average displacement (Dave) datasets when 
additional earthquakes in the M < 6.5 range become available, particularly if consistent 
calculation of Dave can be achieved (Section 3.6.5). 

 Further investigation into spatial correlation in displacement data, in particular, the possible 
relation between observed spatial correlation (that is, ln(D) at two nearby points on the 
main trace are statistically correlated) and interior slip tapering, proper type of model 
residual for spatial correlation analysis, and statistical method for characterizing and 
modeling of spatial correlation in the context of nEMG distribution, and the possible 
earthquake-to-earthquake variation in the spatial correlation within individual earthquakes 
(Section 3.6.6). 

5.3  FUTURE MODEL DEVELOPMENT 

In addition to the FDMs for principal displacement, other component models in Equation (A.1) of 
Appendix A can be developed or improved using the FDHI database. Future model development 
work may include the following:  

1. FDMs for the principal displacement for normal and reverse faults – The same approaches 
documented in this report can be used, including approaches for data selection, data 
processing to define reference coordinates, data processing to aggregate principal 
displacement across multiple subparallel rupture traces, and FDM development via 
regression of GAMLSS (see Section 3.2.3.2). Data from normal, normal-oblique, reverse, 
and reverse-oblique earthquakes will likely be analyzed separately initially. These data 
may be combined for statistical efficiency if initial analyses indicate that such combination 
is reasonable for the inference of parts of FDM that share commonality between different 
styles of faulting.     

2. FDMs for distributed displacement – Data selection and calculation of coordinates relative 
to the LCP (i.e., u_LCP and t_LCP) have already been completed for distributed 
displacement for strike-slip earthquakes. We plan to update the P11 distributed 
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displacement model for strike slip faults. FDMs for distributed displacement for other 
styles of faulting can also be developed.   

3. Surface rupture probability for principal displacement – This is the probability term 
proposed in P11 to account for gaps between principal rupture segments along the main 
rupture trace. Data needed to refine this term can be developed using the FDHI database.   

4. Surface rupture probability for distributed displacement – This probability term is very 
important in assessing hazards from distributed ruptures (see P11 and Youngs et al., 2003). 
The cell counting approach used in Youngs et al. (2003) and in P11 can be followed. The 
slicing method used in Nurminen et al. (2020) and other potentially viable approaches can 
be examined and followed if applicable.  
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APPENDIX A  Petersen et al. (2011) PFDHA 
Framework 

Figure 2.1 in the main report illustrates the geometric elements/parameters used in the probabilistic 
fault displacement hazard analysis (PFDHA) framework of Petersen et al. (2011, hereafter P11), 
including the fault trace mapped prior to a surface rupture event (mapped fault trace), the main 
trace of a future surface rupture, and the coordinate system utilized to specify positions relative to 
the main trace. Descriptions of these parameters are given below before we introduce the basic 
hazard integral for annual rate of exceeding a prescribed value of displacement. 

   Because a future earthquake may not rupture the entire mapped fault trace, random variable 
s is utilized to track the along-fault-trace distance from one fixed end of the mapped fault trace to 
the closer end of future ruptures’ main trace.  

 The site of interest is specified by its along-main-trace position l and its off-main-trace 
position Δ. Note that these two variables are defined relative to the main trace of future rupture, 
not the pre-event mapped fault trace. As described in Section 2.3 of the main report, the positions 
l and Δ are taken as the strike-parallel (u_LCP) and the strike-perpendicular (t_LCP) coordinates 
of the 2nd generalized coordinate system (GC2), using the main trace as the reference of GC2. In 
this study, the main trace of principal rupture is taken as the constructed least-cost path (LCP) of 
the surface rupture traces.  

 The footprint area of an infrastructure is considered in P11’s PFDHA framework. It has a 
dimension z (area z2) and it is centered at the site at a distance Δsite from the main trace. 

 The size of an earthquake is characterized by its moment magnitude m, which is denoted 
as M in Chapter 3 of the main report, as well as the length of main trace L taken as the length of 
LCP.   

 Given site’s position 𝛥  relative to the main trace and site’s footprint area z2, the annual 
rate of the net principal displacement D exceeding a prescribed level D0 is:  
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𝜆 𝐷 𝐷 |𝛥 , 𝑧

𝛼 𝑚0 𝑓𝑀,𝑆 𝑚, 𝑠 𝑃 𝑠𝑟 0|𝑚 𝑃2 𝐷 0|𝑧, 𝛥 , 𝑠𝑟 0 𝑃1 𝐷 0|𝑧, 𝑠𝑟 0  𝑃 𝐷 𝐷0| 𝑙 𝐿⁄ , 𝑚, 𝐷 0 𝑑𝑚𝑑𝑠

𝑚,𝑠

 

 
 

(A.1) 

 

where:  

α(m0)  the annual rate of earthquakes above a minimum magnitude (m0) of 
engineering significance or of a characteristic earthquake magnitude on a 
fault source;  

fM,S(m,s)  a function characterizing the joint density function of earthquake magnitude 
(m) and location (s) of future ruptures associated with the pre-event mapped 
fault trace;  

P[sr≠ 0|m]  the probability of having surface rupture given that a magnitude m 
earthquake occurs. Additional discussions of this probability term are given 
below; 

P2[D≠0|z,∆ sr≠0]  the probability that the main trace of a future surface rupture intersects the 
footprint area z2. This probability term was defined per Chen and Petersen 
(2019) to account for the uncertainty in the location of future surface rupture 
relative to the pre-event mapped fault trace. If the site falls outside the ends 
of main trace, P2 = 0; otherwise, P2 is computed by integrating fR(r) from 
𝑟 ∆ to 𝑟 ∆  (see Figure 4 of Chen and Petersen, 2019). 

The function fR(r) is the probability density function of r, which is the 
shortest distance from an arbitrary point on surface rupture traces to the pre-
event mapped fault trace (see Figure A.1 and Figure 3 of P11).  Note that 
the (non-random) distance ∆ was improperly denoted as 𝑟 in Figure 4 of 
Chen and Petersen (2019). An empirically derived fR(r) was given in Tables 
2 and 3 of P11. Additional discussions of fR(r) are given below;  

P1[D≠0|z,sr≠0]  the probability that the footprint area z2 does not completely fall within a 
surface rupture gap (by definition, principal displacement within a rupture 
gap is zero), given that main trace insects the footprint area; 

P[D≥D0|l/L,m,D≠0]  the probability that principal displacement D exceeds the prescribed level 
D0, given the conditions that the surface rupture event is of magnitude m,  
its main trace intersects site’s footprint area, site’s footprint area does not 
completely fall within a rupture gap on the main trace, and site’s normalized 
along-main-trace position is l/L. This probability is computed as the 
complementary cumulative distribution function (CDF) of the probability 
distribution of principal displacement, which is prescribed by a fault 
displacement model (FDM).  

 



 

137 

Additional discussions of the above terms are given below. Typically, in hazard analysis, 
it is assumed that a fault may rupture: (1) repetitively with similar magnitude earthquakes (over 
the same location) (i.e., the characteristic earthquake recurrence model), (2) with a sequence of 
earthquakes described by an exponential Gutenberg-Richter magnitude-frequency distribution, 
and (3) with earthquakes that follow a combination of the characteristic and Gutenberg-Richter 
magnitude-frequency distributions. These magnitude-frequency distributions are determined from 
examination of historical seismicity, consideration of the physical constraints on the length or area 
of the fault, complexity of the fault along strike, and crustal rheology properties along the fault. 
Earthquake magnitude is estimated from rupture length, rupture area, or magnitude of historical 
earthquakes with uncertainty. Observations indicate that faults do not always rupture along the 
entire mapped length (e.g., the 1868 M 6.8 Hayward and 1933 M 6.4 Long Beach, California, 
earthquakes), and rupture may also jump to adjacent faults (e.g., 1992 M 7.2 Landers, California, 
earthquake). The joint probability density function (PDF), fM,S(m,s), enables consideration of the 
potential for partial rupture occurring over various lengths of the fault. The range of s is from zero 
to the total fault length minus the rupture length. In most PSHA literature, magnitude-frequency 
distribution is denoted as 𝑓 𝑚  (not to be confused with the magnitude-scaling term 𝑓 (M) used 
in FDM), and partial rupture is factored in a separate source to site distance PFD. P11’s PFDHA 
framework uses the joint PDF, fM,S(m,s), to simplify the hazard equation.    

P2[D≠0|z,∆ sr≠0] is computed by integrating the PDF fR(r) over the r range from 
∆ z/2 to ∆ z/2; see Figure 4 of Chen and Petersen (2019). The PDF, fR(r), is defined to 
allow inclusion of uncertainty (and variability) in rupture location relative to the mapped fault 
trace. In P11, location uncertainty is quantified by the PDF of distances r measured from the 
locations of coseismic surface rupture mapped following an earthquake to the nearest fault trace 
mapped prior to the event. The distance data indicate an approximately normal distribution that 
centers on the mapped fault (P11; Chen et al., 2013). In PFDHA, location uncertainty translates 
into variation of calculated principal-fault displacement in the direction perpendicular to fault 
strike. Consequently, the calculated principal-fault displacement along a line across the fault trace 
also resembles the shape of a normal distribution (often with truncation to save computational 
time), exhibiting a bell-shaped profile centered on the mapped fault (P11, 2011; Chen and Petersen, 
2019). The standard deviation of fR(r) depends on the mapping accuracy of the pre-event mapped 
fault trace (categorized as accurately located, approximately located, inferred, or concealed) and 
fault complexity (simple versus complex). In P11’s formulation, variable r is used for both location 
uncertainty and the closest distance from the site to the mapped fault trace. In the current report, 
to avoid confusion, we use r to denote location uncertainty only and use Δsite to denote the closest 
distance from the site to the mapped fault.   

A fault typically is a complex zone that is made of coalescing faults and shears. The surface 
ruptures may not occur on the same trace during subsequent earthquakes, and faults may evolve 
through time, creating new fault traces. This aleatory variability contributes to the random location 
of surface rupture of future earthquakes and is not presently well-quantified. In addition, mapped 
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fault traces have inaccuracies that translate into an epistemic uncertainty in the location of future 
ruptures.  

In P11, the PDF for r includes both aleatory and epistemic components of location 
uncertainty. Ideally, these two types of uncertainties should be treated separately in the PFDHA 
numerical algorithm. However, currently, there are no data that distinguish them. To separate these 
uncertainties, each one needs to be defined quantitatively. Paleoseismic data (e.g., Liu-Zeng et al., 
2004, 2006; Dawson et al., 2003) can be used to quantify the natural variability in rupture location. 
However, such data need to be systematically collected and statistically analyzed before they can 
be used in PFDHA (Chen et al., 2013).   

P[sr≠ 0|m] accounts for the probability that an earthquake rupture on a mapped fault 
reaches the surface. For example, the 1989 M 6.9 Loma Prieta, California, and the 2002 M 6.7 
Nenana Mountain, Alaska, earthquake ruptures did not extend to the surface and, therefore, did 
not present a surface fault displacement hazard. This probability can be computed using either 
simulation or empirical models (Youngs et al., 2003). P11 used the empirical formulation 
developed by Wells and Coppersmith (1993). Their equation for calculating the probability of 
surface rupture is given by a logistic regression model (commonly applied when the dependent 
variable is dichotomous) that provides the probability of surface rupture conditioned on magnitude 
m: 

 

𝑃 𝑠𝑟 0|𝑚
𝑒

1 𝑒
 (A.2)

  

where sr is a binary variable, with sr≠0 representing the occurrence of surface rupture, and 
constants a and b are regression coefficients that depend on fault type. For example, a and b are -
12.51 and 2.053, respectively, for strike-slip faults, implying probabilities of 87% that an M 7 
earthquake will rupture to the surface and 95% that an M 7.5 earthquake will rupture to the surface. 
Other relations may also be derived from local/regional data of surface rupturing events (e.g., Moss 
and Ross, 2011, for reverse faults).   

The term P1[D≠0|z,sr≠0] represents the probability of non-zero displacement given that the 
main trace of surface rupture passes through the footprint area 𝑧 . It accounts for gaps of surface 
rupture directly along the main trace. For large through-going strike-slip faults in California, it is 
reasonable to assume that P1[D≠0|z,sr≠0] is 1.0. In other cases, this assumption may not be 
appropriate, particularly for less mature faults or faults with complex geometry. Many mapped 
principal ruptures in the FDHI database are fragmented, and gags with no measurable surface 
displacement are observed at all scales. One example of events with highly fragmented surface 
rupture is the Kumamoto earthquake.  
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P[D ≥ D0|l/L, m, D≠0] is the conditional probability that principal displacement D exceeds 
a prescribed D0. This exceedance probability is computed as the complementary CDF of the 
adopted probability distribution of principal displacement. For example, in P11, the exceedance 
probability is obtained by using the complementary CDF of log-normal distribution. For the 
preferred model of this study, it is computed using the complementary CDF of negative 
exponentially modified Gaussian (nEMG) distribution given in Appendix C.    

Each PDF or probability term discussed above is a component model in the P11 PFDHA 
framework. This framework and data needed to develop empirical models for each component are 
summarized in Figure A.1 for principal displacement. The FDMs discussed in Chapter 3 of the 
main report are needed in the calculation of the conditional exceedance probability for principal 
displacement (i.e., the P[D≥D0|l/L,m,D≠0] term in Figure A.1).  

 Except for the P[D≥D0|l/L,m,D≠0], other components in the P11 framework are not 
updated in this study. The Fault Displacement Hazard Initiative (FDHI) database (Sarmiento et al., 
2021) can be used to update some of these models in the future. As an example, the FDHI database 
can be used to update the P1[D≠0|z,sr≠0] term. However, the FDHI database does not contain data 
needed to define the conditional probability of surface rupture given magnitude or the uncertainty 
in the location of future surface rupture.  
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Figure A.1.  Illustration of the Petersen et al. (2011) and Chen and Petersen (2019) probabilistic fault displacement hazard analysis 
framework, component models, and data needed to develop empirical formula of each component model. 



142 
 

 

 

APPENDIX B  Data Selection Tables 

This appendix presents four data selection tables referred to in Chapter 2. These include: 

Table B.1. Strike-slip events in the Fault Displacement Hazard Initiative (FDHI) database 

Table B.2. Rupture dataset selection and rationale 

Table B.3. Explanation of data quality indices in the Fault Displacement Hazard Initiative (FDHI) 
database and usage recommendation (slightly simplified from Sarmiento et al., 2021) 

Table B.4. Measurement dataset selection and rationale 
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Table B.1.  Strike‐slip events in the Fault Displacement Hazard Initiative (FDHI) database 

EQ_ID3  Eq_name4  Region  Year  Mw5 
Number of Datasets 

Rupture  Measurement 

4  Balochistan  Pakistan  2013  7.70    2 

6  Borrego1  California  1968  6.63     

36  ChalfantValley  California  1986  6.19    2 

21  Darfield  New Zealand  2010  7.00  2  3 

10  Denali2  Alaska  2002  7.90    3 

11  Duzce1  Turkey  1999  7.14  2  4 

57  ElmoreRanch  California  1987  6.22     

2  HectorMine1  California  1999  7.13    4 

28  Imperial19792  California  1979  6.53     

7  Imperial19401  California  1979  6.95    2 

5  Izmit_Kocaeli1  Turkey  1999  7.51    2 

9  Kobe1  Japan  1995  6.90    2 

17  Kumamoto  Japan  2016  7.00     

1  Landers1  California  1992  7.28    2 

55  Luzon2  Philippines  1990  7.70     

13  Napa  California  2014  6.00     

65  Neftegorsk  Russia  1995  7.00     

29  Parkfield1966  California  1966  6.19     

22  Parkfield2004  California  2004  6.00     

42  Ridgecrest1  California  2019  6.40  2   

43  Ridgecrest2  California  2019  7.10  2   

53  SanMiguel  Mexico  1956  6.80     

8  SuperstitionHills1  California  1987  6.54     

14  Yushu  China  2010  6.90    2 

54  Yutian  China  2014  6.90    2 

37  Zirkuh  Iran  1997  7.20     

67  Kunlun_Kokoxili  Northern Tibet  2001  7.80    2 

71  Palu  Indonesia  2018  7.50    3 

75  YeniceGonen  Turkey  1953  7.30     

32  GalwayLake  California  1975  5.20 

Excluded Events 

70  HomesteadValley  California  1979  5.20 

15  Hualien  Taiwan  2018  6.40 

62  IzuOshima  Japan  1978  6.60 

61  IzuPeninsula  Japan  1974  6.50 

58  Pisayambo  Ecuador  2010  5.00 
1Used in the Petersen et al. (2011) study; 2used in Petersen et al. (2011) principal displacement model, 
with  data  from Wesnousky  (2008);  3Earthquake  identification  number  in  FDHI  database;  4Earthquake 
name in FDHI database; 5See FDHI database (Sarmiento et al., 2021) for magnitude type (mostly Mw with 
a few exceptions). 
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Table B.2.  Rupture dataset selection and rationale 

Event 
RUP_DS_ID1 

Reasons 
Selected  Excluded 

Darfield  103  80  FDHI recommendation 

Duzce  43  36 
More complete spatial coverage, companion 
measurement dataset 

Ridgecrest1  132  145  FDHI recommendation 

Ridgecrest2  132  145  FDHI recommendation 

1Rupture dataset identification number in the Fault Displacement Hazard Initiative (FDHI) 
database (Sarmiento et al., 2021). 
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Table B.3.  Explanation of data quality indices in the Fault Displacement Hazard Initiative (FDHI) 
database (October 2020 release) and usage recommendation (slightly simplified)1 

qual_code  net_flag  Explanation  Recommendation 

1  Keep  Good data  Good data 

2000  Check 
Same site (or obviously same site) measurement 
from another dataset 

Check available 
alternatives 

2001  Check  Nearby measurement from another dataset 
Check available 
alternatives 

9000  Toss 
Other measurement of same feature is more 
complete 

Bad data 

9001  Toss  No measurement data  Bad data 

9002  Toss 
Incomplete measurement, significant lateral slip 
unaccounted for 

Bad data 

9003  Toss 
Incomplete measurement, significant vertical 
slip unaccounted for 

Bad data 

9004  Toss  Measurement likely erroneous  Bad data 

9005  Toss  Location likely erroneous  Bad data 

9006  Toss  Deformation likely not tectonic  Bad data 

3000  Check 
Incomplete measurement, lateral slip 
component might be missing 

Check measurement 
completeness/quality 

3001  Check 
Incomplete measurement, vertical slip 
component might be missing 

Same as above 

3002  Check  Measurement might be minimum  Same as above 

3003  Check  Measurement might be maximum  Same as above 

3004  Check  Author quality is low  Same as above 

3005  Check  Deformation might not be tectonic  Same as above 

4000  Check  Location might be erroneous 
Check for possible 
error 

4001  Check  Measurement might be erroneous  Same as above 

5000  Check 
Measurement technique might mis‐estimate 
vertical slip component 

Check measurement 
technique 

1Reproduced from FDHI database documentation, a worksheet titled “quality_code_explanation” 
in a Microsoft Excel file named 
“FDHI_Database_ph16_rev2_FIELDDEFINITIONS_20201005.” 
  



 

146 

Table B.4.  Measurement dataset selection and rationale 

Event 
PT_DS_ID1 

Rationale 
Selected  Excluded 

Balochistan  23  75  Companion of the rupture dataset  

ChalfantValley  126  125 
Larger number of high‐quality principal displacement 
measurements 

Darfield  78  77, 79 
The most complete spatial coverage, largest number of 
high‐quality principal displacement measurements 

Denali  39  40, 90 
Largest number of high‐quality principal displacement 
measurements 

Duzce  43 
37, 38, 
144 

A much larger dataset, largest number of high‐quality 
principal displacement measurements, companion of the 
selected rupture dataset  

Hector  2  3, 6, 99 
Largest number of high‐quality principal displacement 
measurements, an updated version of 6. Th other two 
datasets are mostly ranked as “total” 

Hualien  62  61  All measurements in 61 are ranked as “total” 

Imperial1940  96  162 
162 has very limited spatial coverage and other reasons 
discussed in the text 

Izmit_Kocaeli  6  144 
Larger number of good quality principal displacement 
measurements, companion of rupture dataset 

Kobe  86  6 
Larger number of good quality principal displacement 
measurements 

Landers  6  3 
Larger number of good quality principal displacement 
measurements, 3 is mostly ranked as “total” 

Yushu  58  57 
Larger number of good quality principal displacement 
measurements 

Yutian  146  147 
Larger number of good quality principal displacement 
measurements 

Kunlun_Kokixili  52  93 

Field‐based measurements, better spatial coverage; 93 
covers only central ≈ 100 km of rupture, is satellite‐based, 

general high slip than field‐based measurements  

Palu  171  169, 170 
Companion of rupture dataset, largest number of high‐
quality measurements, better spatial coverage 

1These are measurement point identification numbers in the Fault Displacement Hazard Initiative 
(FDHI) database (Sarmiento et al., 2021). 
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APPENDIX C  Implementation of Probability 
Distributions  

C.1     SKEW‐NORMAL DISTRIBUTION 
 
C.1.1    PDF and CDF 

The probability density function (PDF) 𝑓  of skew-normal variate  𝑌 ~ 𝑆𝑁 𝜇, 𝜎,  is reproduced 
from Table 18.9 of Rigby et al. (2020), 

𝑓 𝑦  
2
𝜎

  𝑧  ∙    𝑧  

𝑧
𝑦 𝜇

𝜎  

where  and  are the PDF and the cumulative distribution function (CDF) of standard normal 
distribution. Rigby et al. (2020) does not provide an analytic expression of the CDF (𝐹 ) of skew-
normal distribution; instead, 𝐹  in R’s package gamlss (Stasinopoulos et al., 2017) is computed by 
numerical integration of 𝑓 . Alternatively, an analytic expression of 𝐹  in terms of Owen’s T 
function 𝑇 𝑧,   (Owen, 1956) is given in Azzalini and Capitanio (2014; Equation 2.37), 

 
 

𝐹 𝑦  𝑧 2 ∙  𝑇 𝑧,  
 
C.1.2    R implementation 

Skew-normal distribution is implemented in R’s packages sn (Azzalini and Capitanio, 2014) and 
gamlss.  The CDF in gamlss package is computed using numerical integration of the PDF, while 
CDF in sn package uses the alternative expression that involves Owen’s T function.  
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C.1.3    FORTRAN implementation 

A FORTRAN subroutine for the CDF of skew-normal distribution was coded in April 2022 and 
incorporated into California Geological Survey’s (CGS’s) PFDHA code, which was then used in 
the example hazard calculations described in Chapter 4.  The subroutine psn.f (listed below) is 
based on the above expression of 𝐹  in which the Owen’s T function is computed using the fast 
and accurate algorithm of Patefield and Tandy (2000). We did not code the PDF of skew-normal 
distribution in FORTRAN because it is not needed in PFDHA. 

 
C.1.4    SOURCE CODES 
 
C.1.4.1   psn.f 
 

FORTRAN code psn.f can be downloaded from https://www.conservation.ca.gov/cgs/pfdha. No 
source code listing is provided in this report. 

 
 
 
C.2    SKEW‐T DISTRIBUTION 

 

From Table 18.25 of Rigby et al. (2020), the PDF of skew-t distribution is  

𝑓  
2
𝜎

 𝑓 𝑧  𝐹 𝜔  

𝑧 𝑦 𝜇 /𝜎 

𝜔  𝑧 𝜏 1 / 𝜏 𝑧   

where 𝑓 is the PDF of Student’s-t with 𝜏 degree of freedom (𝑍  ~ 𝑡  and 𝐹 𝜔  is the CDF of 

Student’s-t with 𝜏 1 degree of freedom (𝑍  ~ 𝑡 . Analytic expression of skew-t’s CDF is not 
provided in Rigby et al. (2020) and Azzalini and Capitanio (2014). 

  
 
C.2.1    R implementation 

Skew-t distribution is implemented in R’s packages sn and gamlss.  The CDF in both sn and gamlss 
package is computed using numerical integration of the PDF.  
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C.2.2   FORTRAN implementation 

We coded the PDF of skew-t distribution in FORTRAN (pst.f).  The same FORTRAN code also 
computes the CDF of skew-t distribution by numerical integration of its PDF. This subroutine was 
written in November 2002 and has yet to be incorporated into CGS’s PFDHA code.  

 

C.2.3   Source codes 
 

FORTRAN code pst.f can be downloaded from https://www.conservation.ca.gov/cgs/pfdha. No 
source code listing is provided in this report. 

 

C.3     nEMG DISTRIBUTION 
 
C.3.1    PDF and CDF  

In this section, we present the analytical expressions of the PDF (𝑓 ) and CDF (𝐹 ) of negative 
exponentially modified Gaussian (nEMG) variate 𝑌 𝐺 𝐸  ~ 𝑛𝐸𝑀𝐺 𝜇, 𝜎,  . We note that, 
because 𝑋  𝑌 𝐺 𝐸, 𝑋 is an exGaussian variate whose Gaussian component has a mean 
of 𝜇 , 𝑋 ~ 𝑒𝑥𝐺𝐴𝑈𝑆 𝜇, 𝜎,  .  PDF 𝑓  and CDF 𝐹  presented herein are derived by taking 
advantages of the relation 𝑌 𝑋 and the analytic expressions of 𝑋’s PDF (𝑓 ) and CDF (𝐹 ). 

 
C.3.1.1    PDF and CDF of exGaussian Variate 
 

The distribution functions of exGaussian variate 𝑋, as implemented in R’s gamlss package, has 
the following analytic expressions. 

𝑓 𝑥 |𝜇, 𝜎, 

⎩
⎪
⎨

⎪
⎧1


 𝑒


  
𝑧
𝜎

,  0.05𝜎   


𝑥 𝜇

𝜎
,     0.05𝜎 

 

 

𝑧 𝑥 𝜇
𝜎2

   

𝐹 𝑥 |𝜇, 𝜎, 

⎩
⎪
⎨

⎪
⎧


𝑥 𝜇
𝜎

 
𝑧
𝜎

 𝑒

  


  


 ,  0.05𝜎   


𝑥 𝜇

𝜎
,     0.05𝜎 
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where  .  and  .  are the PDF and CDF of the standard normal distribution. 

 
C.3.1.2    PDF and CDF of nEMG Variate 
 
Because 𝑌 𝑋, the PDF of 𝑌 is related to the PDF of 𝑋 as 
 

𝑓  𝑓 𝑥 . 
 
By substituting 𝑦 for 𝑥 and 𝜇 for 𝜇 in the expression for 𝑓 , we have 

𝑓 𝑦 |𝜇, 𝜎, 

⎩
⎪
⎨

⎪
⎧1


 𝑒


  
𝑧
𝜎

,  0.05𝜎   


𝑦 𝜇

𝜎
,     0.05𝜎 

 

 

𝑧 𝑦 𝜇
𝜎2

   

 
To obtain the PDF of 𝑌, we use again 𝑌 𝑋 and the property  
 

𝐹 𝑦 𝑃 𝑌 𝑦 𝑃 𝑋 𝑦 𝑃 𝑋 𝑦 1 𝑃 𝑋 𝑦 1  𝐹 𝑦  
 
and we get 
 

𝐹 𝑦 |𝜇, 𝜎,  1 𝐹 𝑦 | 𝜇, 𝜎,  .   
 
Substituting 𝑦 for 𝑥 and 𝜇 for 𝜇 in the expression for 𝐹 , we have 
 

𝐹 𝑦 |𝜇, 𝜎,  1  

⎩
⎪
⎨

⎪
⎧

  
𝑦 𝜇

𝜎
 

𝑧
𝜎

 𝑒

  


  


   ,  0.05𝜎   


𝑦 𝜇

𝜎
,     0.05𝜎 

 

 
C.3.2    R implementation 

There are two versions of R implementations for PDF and CDF. The first version is based on the 
relation between 𝑓 y  and 𝑓 x  for PDF (dnEMG.r), and between 𝐹 y and 𝐹 x  for CDF 
(pnEMG.r).  The second version (nEMG.r) is based on the analytic expressions of 𝑓 y  and 𝐹 y  
presented above.  
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C.3.3    FORTRAN implementation 

A FORTRAN subroutine for the CDF of 𝑌 (𝐹 𝑦 |𝜇, 𝜎,  ) was coded in May 2022 and 
incorporated into CGS’s PFDHA code, which was then used in the example hazard calculations 
described in Chapter 4.  The subroutine pnEMG.f (listed below) is based on the relation 
between 𝐹 y  and 𝐹 x  described above. We did not code the PDF of nEMG distribution 
because it is not needed in PFDHA. 

 
C.3.4    Source codes 
 
C.3.4.1   dnEMG.r 

dnENG <- function (x, mu = 5, sigma = 1, nu = 1, log = FALSE) { 

  if (any(sigma <= 0))  

    stop(paste("sigma must be greater than 0 ", "\n", "")) 

  if (any(nu <= 0))  

    stop(paste("nu must be greater than 0 ", "\n", "")) 

  logfy <- gamlss::dexGAUS(-x, mu = -mu, sigma = sigma, nu = nu, log = 
T) 

  if (log == FALSE)  

    fy <- exp(logfy) 

  else fy <- logfy 

  fy 

} 

 
NOTE: R function gamlss::dexGAUS is the PDF of exGaussian distribution 
 
C.3.4.2   pnEMG.r 
 
pnENG <- function (q, mu = 5, sigma = 1, nu = 1, lower.tail = TRUE, 
log.p = FALSE) { 
 
  if (any(sigma <= 0))  
    stop(paste("sigma must be greater than 0 ", "\n", "")) 
  if (any(nu <= 0))  
    stop(paste("nu must be greater than 0 ", "\n", "")) 
   
  cdf <- 1 – gamlss::pexGAUS(-q, -mu, sigma ,nu, lower.tail = 
lower.tail, log.p = F) 
  if (lower.tail == TRUE)  
    cdf <- cdf 
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  else cdf <- 1 - cdf 
   
  if (log.p == FALSE)  
    cdf <- cdf 
  else cdf <- log(cdf) 
  cdf 
} 
 
NOTE: R function gamlss::pexGAUS is the CDF of exGaussian distribution. 
 

 
C.3.4.3   nEMG.r 
 

nEMG <- function(y, mu, sig, nu) { 

    z <- -y + mu - sig^2/nu  

    if(mu > 0.05 * sig) { 

      f_y <- 1/nu * exp(-(z+sig^2/(2*nu))/nu) * pnorm(z/sig)  # eq 1.4 

      F_y <- 1 - (pnorm((-y + mu) / sig) - pnorm(z/sig) * exp(((-mu + sig^2/nu)^2 - mu^2 + 2 * y * sig^2 / 
nu) / (2 * sig^2))) 

    } else { 

      f_y <- dnorm((-y + mu) / sig) 

      F_y <- pnorm((-y + mu) / sig) 

    } 

    return(list(f_y = f_y, F_y = F_y)) 

  } 

 
NOTE: R functions dnorm and pnorm are the PDF and CDF of normal distribution, 
respectively. 
 
C.3.4.4   pnEMG.f 
 

FORTRAN code pnEMG.f can be downloaded from https://www.conservation.ca.gov/cgs/pfdha. 
No source code listing is provided in this report. 
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APPENDIX D  Tier Classification of FDHI Principal 
Displacement Data 

In Section 3.2.2 the level of data non-normality is reduced by excluding a small number of small-
displacement observations whose residuals are deemed incompatible with the assumed normal 
distribution. Such trimming is achieved by classifying displacement data in a particular earthquake 
into two tiers. The tier-1 class, which consists of the majority of observations, is intended to be the 
subset of displacements that follows roughly a hypothetical normal distribution. The tier-2 class, 
which consists of a small number of small-displacement observations, is the complement of the 
tier-1 subset. The method utilized to define the boundary between tier-1 and tier-2 is described in 
this Appendix.   

  

D.1  TIER BOUNDARY 

Tier classification of displacement data is actually based on the natural logarithm of displacement 
but, for the sake of brevity, we will still refer to it as displacement. In this study, tier boundary is 
taken as the estimated lower bound of the hypothetical normal population. The estimation of this 
lower bound, per earthquake, is outlined as follows:  

 

1. The 0.997 (𝑦 . ) and the 0.5 (𝑦 . ) quantiles of fault displacements are modeled 
separately by the same function  𝑓 𝑙2𝐿  but with different coefficient values. Variable 
𝑙2𝐿 is the normalized along-trace position of a displacement measurement point; see 
Section 3.2.1.1 of the main report. More details on the function 𝑓 𝑙2𝐿  are given below. 

2. Quantile regression (Koenker, 2005) is utilized to infer the model coefficients for 𝑦 .  
and 𝑦 .   separately using the displacement data in an individual earthquake. The estimated 
models provide estimates of 𝑦 .  and 𝑦 .  for points along the main trace of that 
earthquake. 
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 Quantile regression is a robust and distribution-free regression method. Hence, it does 
not matter whether displacement data follow a normal distribution or not. 

3. The estimated 0.997 and 0.5 quantiles are assumed to be the same as the 0.997 and 0.5 
quantiles of the hypothetical normal distribution of the tier-1 displacement. 
 

4. The lower bound of displacements taken from the hypothetical normal distribution can be 
ideally defined by the 0.003 quantile, or 𝑦 . 𝑦 . 𝑦 . .  However, we place a floor 
on 𝑦 . 𝑦 .  to help stabilize the along-length variation of the lower bound when the 
estimated 𝑦 . 𝑦 .  interval varies widely over the rupture length. We choose the 
floor 𝑓𝑙 as the 75th percentile of the 𝑦 . 𝑦 .  values predicted for 101 locations 
equally spaced along the rupture length. Such floor also helps prevents excessive 
assignment of data to the tier-2 class. With this floor, the lower bound is defined by the 
curve of 𝑦 . 𝑚𝑎𝑥 𝑦 . 𝑦 . , 𝑓𝑙 . 

 
An example of tier boundary calculation is given on Figure D.1. 
 

D.2  FUNCTIONAL FORMS FOR 𝒍𝟐𝑳‐DEPENDENCE 
 

Preliminary evaluations reveal that, for earthquakes with sparse measurements, quantile estimation 
(and hence the estimated lower bound of tier-1 displacement) would be sensitive to the selected 
functional form of 𝑓 𝑙2𝐿 . To account for such sensitivity, we adopt eight different functional 
forms and synthesize the classification results into a single final classification of a data point.  

  

In the following, the q quantile of 𝑙𝑛 𝐷  is denoted as 𝑦 , where q is either 0.997 or 0.5. 

The set of  𝑓 𝑙2𝐿  functions are summarized below. 

 

1. Elliptical (2-parameter; symmetric with respect to 𝑙2𝐿 0.5): 𝑙𝑛 𝑦  𝑎

 𝑏 1 .

.
1  

 This 𝑓  function, which is symmetric with respect to 𝑙2𝐿 0.5, is the same 
function as used in this study to model along-trace variation of the location 
parameter of assumed probability distribution; see Chapter 3 of the main text. 

2. Elliptical + linear 𝑙2𝐿 term (3-parameter): 𝑙𝑛 𝑦  𝑎  𝑏 1 .

.
1

 𝑐 𝑙2𝐿 0.5  
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 This functional form is an extension of the elliptical form to incorporate 
asymmetry in along-trace variation. See also Section 3.6.2 of the main text. 

3. Quadratic (3-parameter): 𝑙𝑛 𝑦  𝑎 𝑏 𝑙2𝐿  𝑐 𝑙2𝐿  

 Note that it is not the same function as used in the quadratic model of Petersen 
et al. (2011; P11) (P11 uses 𝑙2𝐿  as the covariate, which results in a 

symmetric function with respect to 𝑙2𝐿 0.5). 

4. Cubic (3-parameter): 𝑙𝑛 𝑦  𝑎 𝑏 𝑐 𝑙2𝐿 𝑏 𝑐 1  𝑙2𝐿  𝑏 𝑙2𝐿  

 This cubic functional form is specialized to ensure that 𝑦  at both edges of the 

main trace is equal to a. 

5. Modified beta PDF (4-parameter):  𝑙𝑛 𝑦 𝑒  𝑙2𝐿  1 𝑙2𝐿 𝑑 

 This functional form was first proposed by Dr. Nico Kuehn and it was adopted 
and used in the early stage of our investigation to model the mean of 𝑙𝑛 𝐷  
under normality assumption. 

 The exponentiations in 𝑒 , 𝑒 , and 𝑒  is a way to impose positive-value 
constraint on the model coefficients a, b, and c. 

 

6. B-spline function of three degrees of freedom, as implemented by the bs(df=3) 
function of package ‘splines’ in R (Hastie, 1992) 
 

7. B-spline function of five degrees of freedom, as implemented by the bs(df=5) 
function of package ‘splines’ in R 

 
8. B-spline function of seven degrees of freedom, as implemented by the bs(df=7) 

function of package ‘splines’ in R 

 

 Except for the two-parameter elliptical functional form, all of the above functional forms 
do not necessarily peak at 𝑙2𝐿 0.5. 

 
 
D.3  SYNTHESIS OF TIER CLASSIFICATIONS 

For small-displacement data, the outcomes of tier classifications using the above eight different 
functional forms of  𝑓 𝑙2𝐿  (Figure D.2) are not always consistent.  Such inconsistency poses a 
challenge to obtaining a single classification for a data point.  As an example, when a data point is 
classified as tier-2 by 2 of the 8 functional forms, is it appropriate to ignore the two tier-2 
classifications and treat that data point as tier-1? What is the number of times of tier-2 
classifications for a data point to be given a final classification of tier 2? We could not find a 



 

157 

criterion that applies to all earthquakes, because the tier-classification inconsistency appears to 
depend on the number of measurements in a particular earthquake and the complexity of 
displacement’s along-trace variation in that earthquake. We resort to using an earthquake-specific 
criterion that is determined by manually examining the classification results for each individual 
earthquake. The earthquake-specific criterion and the final classification of each data point are 
shown on Figure D.3.   

 

REFERENCES 
 

Hastie T. J. (1992). Generalized Additive Models, Chapter 7 of Statistical Models. In: J. M. Chambers,  T. J. 

Hastie (eds.), Wadsworth & Brooks/Cole. 
 

Koenker R. (2005). Quantile Regression, Cambridge University Press: Cambridge, 349 pp., doi: 

10.1017/CBO9780511754098. 

 

Petersen M. D., Dawson T. E., Chen R., Cao T., Wills C. J., Schwartz D. P., Frankel A. D. (2011). Fault 

displacement hazard for strike‐slip faults. Bulletin of the Seismological Society of America, 101(2), 

805–825, doi: 10.1785/0120100035. 

 
 

  



158 
 

 

  

  

Figure D.1.  An example of tier classification of the Landers principal net displacement (D, in units of meters) from the 
preferred data source PT_DS_ID = 6, using the 2‐parameter ellipse functional form.  The estimated 0.997 and 0.5 
quantiles are shown as the orange and red curves, respectively. The estimated 0.003 quantile of the hypothetical 
normal distribution is shown as the thick red curve, while the lower‐bound of tier‐1 displacements is shown as the 
thick black curve. The identified tier‐2 displacements are marked by a small solid square inside an open square.  
Displacements from the same rupture segment are marked by the same color.  For comparisons, the 0.15 and the 
0.1 quantiles are shown as the cyan and the blue dashed lines, respectively. 
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Figure D.2.  Tier classification of principal net displacement (D) obtained using each of the eight alternative functional form 
of 𝒇𝒍𝟐𝑳 𝒍𝟐𝑳 : (A) Elliptical. (B) Elliptical plus Linear. (C) Quadratic. (D) Cubic. (E) Modified Beta. (F) B‐Spline, degrees of 
freedom (df) = 3. (G) B‐Spline df = 5. (H) B‐Spline df = 7. Earthquake name, magnitude (M), and preferred FDHI data source 
identification (DS) are indicated inside each panel title strip. 

Note: This page is for Figure D.2(A). Figures D.2(B) through D.2(H) are in the next 7 pages  
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Figure D.2.  Tier classification results obtained using each of the eight alternative functional form of 𝑓 𝑙2𝐿 : (B) Elliptical plus linear. 
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Figure D.2.  Tier classification results obtained using each of the eight alternative functional form of 𝑓 𝑙2𝐿 : (C) Quadratic. 
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Figure D.2.  Tier classification results obtained using each of the eight alternative functional form of 𝑓 𝑙2𝐿 : (D) Cubic. 
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Figure D.2.  Tier classification results obtained using each of the eight alternative functional form of 𝑓 𝑙2𝐿 : (E) Modified Beta. 
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Figure D.2.  Tier classification results obtained using each of the eight alternative functional form of 𝒇𝒍𝟐𝑳 𝒍𝟐𝑳 . (F) B‐Spline, df = 3.  
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Figure D.2.  Tier classification results obtained using each of the eight alternative functional form of 𝑓 𝑙2𝐿 : (G) B‐Spline, df = 5. 
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Figure D.2.  Tier classification results obtained using each of the eight alternative functional form of 𝑓 𝑙2𝐿 : (H) B‐Spline, df = 7. 
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Figure D.3.  Single final tier classification of a data point. Earthquake name, magnitude (M), and preferred FDHI data source 
identification (DS) are indicated inside the panel title strip. Indicator variable 𝑓𝑙𝑎𝑔  is equal to 1 if the data point of interest 

is classified as tier 2 by the i‐th functional form, otherwise 𝑓𝑙𝑎𝑔  = 0. The sum ∑ 𝑓𝑙𝑎𝑔  is the number of times a data 

point is classified as tier 2. A data point is assigned a final classification of tier‐2 if ∑ 𝑓𝑙𝑎𝑔 𝑟𝑒𝑐𝑜𝑚; that is, it is 
classified as tier 2 more than recom times.  The criterion recom is earthquake specific and given inside each panel.
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ELECTRONIC SUPPLEMENTS 

We provide two electronic supplements at https://www.conservation.ca.gov/cgs/pfdha:  

1. Selected measurement data used in model development in comma-separated value file 
format 

2. ArcGIS shapefiles of the least-cost paths for all strike-slip events in the Fault Displacement 
Hazard Initiative (FDHI) database 

3. Least-cost path analysis – ArcGIS model and a step-by-step procedural guide  
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