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Abstract 

Spatial representations of the results of conventional probabilistic seismic hazard analyses (PSHA) 
typically take form of hazard maps, which represent results of independent analyses at many 
locations within the map. Hazard maps are not suitable for assessing risk to spatially distributed 
infrastructure (such as natural gas pipelines) because they significantly overpredict shaking 
intensities that the system could experience and thus the number and spatial extent of potential 
failures. This occurs because (1) hazard maps represent the aggregated effects of many events, and 
those events are likely to be different in different parts of a broad infrastructure system and (2) 
hazard maps provide relatively consistent levels of ground motions in space, whereas real 
earthquakes have more complex patterns that are reflected in models of the spatial correlation of 
ground motions. To overcome these problems, we present in this report an alternate scenario-based 
method, which utilizes spatially correlated hazard-consistent ground motions.  

We describe the basis for the methodology and introduce procedures for developing 
spatially correlated hazard-consistent ground motions for seismic hazard risk analysis. There are 
three major steps: 1) conduct conventional point-based PSHA to obtain hazard curves and 
disaggregations as input (presented in Al Atik et al. 2022); 2) select hazard-consistent scenario 
earthquake events; and 3) generate spatially correlated ground motion realizations for each 
selected scenario event and select a manageable subset of hazard-consistent ground motion 
realizations. This report presents the methodology for Steps 2 and 3.    

The aim of the scenario event selection is a manageable event subset that, in aggregate, 
approximately matches the hazard for single or multiple ground motion intensity measures across 
the spatially-distributed system while preserving contributions of different magnitudes and 
distances to the PSHA. We present a flexible and efficient regression-based method that meets 
these requirements using point-based PSHA results as inputs. The ground motion selection 
methodology is formulated similarly, but instead of selecting a subset of events among many 
candidate events, it selects realizations of ground motion from all selected events among many 
such possible realizations.  

The procedure was applied to derive correlated hazard-consistent ground motion 
realizations from scenarios events for application to risk analyses for California natural gas 
pipeline infrastructure. We selected 1,220 gridded sites that are within 1 km of gas pipelines as the 
target hazard sites. We applied the regression-based method to select 599 hazard-consistent 
scenario events to preserve the hazard curves for Peak Ground Acceleration (PGA) and Peak 
Ground Velocity (PGV) from return periods of 200 years to 2,475 years and their magnitude 
distributions from disaggregation at the 1,220 target sites. We subsequently applied the regression-
based method a second time to select 25 hazard-consistent correlated ground motion distributions 
for both PGA and PGV from scenario events. Lastly, we implement co-Kriging to interpolate the 
selected correlated maps to a 100 m square resolution.  
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1 Introduction 

Conventional probabilistic seismic hazard analysis (PSHA) is performed at a specific site to 
quantify the annual probability of exceedance of a ground motion intensity measure based on the 
statistical distributions of ground motions that each of a large number of earthquake events might 
produce at the site. Magnitude (M) recurrence relations for earthquake sources are discretized into 
scenario events within magnitude bins, with each event having a rate of occurrence, a magnitude, 
and a location. Ground motion at the site is then characterized as a probabilistic function of event 
magnitude, source-to-site distance, and site conditions. Rates of exceedance of ground shaking are 
then summed over all of the considered events to form a hazard curve (McGuire, 2004). Hazard 
maps can then be generated by repeating the PSHA at many sites and then assembling ground 
motions from the hazard curves at a uniform exceedance rate across sites.  

Uniform hazard maps are useful for characterizing demand for discrete infrastructure 
components, such as buildings. However, they are not suitable for assessing risk to spatially 
distributed infrastructure. First, no single event could produce the same ground shakings as the 
hazard map across a spatially distributed system. Second, the spatial correlation of ground motions 
within an event is a key component for spatially distributed infrastructure risk analysis but it is 
missing in the hazard map (Chang et al., 2000; Campbell and Seligson, 2003). Alternatively, a 
robust but computationally expensive approach is to analyze the spatially distributed infrastructure 
system for all possible spatial correlated ground motions produced by every event considered in 
the PSHA. However, PSHA often involves hundreds of thousands of events, each of which can 
produce infinite numbers of spatially correlated ground motion realizations. Therefore, this 
approach is generally not practical. Han and Davidson (2012) proposed a framework for regional 
probabilistic seismic risk analysis by using a finite number of hazard consistent spatially correlated 
ground motion maps.  

We adopt their approach but propose a new framework, as shown in Figure 1.1. This 
framework contains five steps: target hazard calculation, event scenarios pre-selection, event 
scenarios final selection, ground motion map scenarios generation, and ground motion map 
scenarios selection. The first step, target hazard calculation, refers to the conventional point-based 
PSHA calculations for all sites in the study region. The results of hazard curves and 
disaggregations and the events considered in the PSHA are the inputs for the following steps. This 
step has been completed separately from the present effort and is described by Al Atik et al. (2022). 
The second and third steps operate together to select hazard-consistent scenario events. The second 
step uses the disaggregation results to pre-select a subset of events with the largest hazards 
contributions and the third step takes the pre-selected events and implements a newly proposed 
Least Absolute Shrinkage and Selection Operator (LASSO) regression-based method to select a 
final set of events with adjusted annual occurrence rates that make them hazard consistent with the 
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full event set from PSHA. The fourth step generates a significant number of ground motion 
realizations using one or multiple intensity measures in which correlation structures are applied 
both spatially and between intensity measure types for each of the selected events. The fifth step 
applies the LASSO regression again to select the final set of ground motion maps and adjust their 
annual occurrence rates for hazard consistency.  

 

 

Figure 1.1. Framework for spatial correlated hazard consistent ground motion map scenarios. 

 

In this report, we first describe the mathematical formulation for region-specific hazard 
calculations in Chapter 2, which are the bases of our methodology for event and ground motion 
map scenarios selection. In Chapter 3, we introduce LASSO regression and a series of required 
data manipulations (tensor rank reduction transformation, matrix representation of distributions) 
to be able to implement LASSO for scenarios selection. In Chapter 4, we describe how to generate 
ground motion maps that preserve spatial and cross-intensity measure correlations and how to re-
implement LASSO for ground motion map scenario selection. Chapter 4 also describes co-Kriging 
interpolation to densify selected correlated ground motion maps. We present in Chapter 5 the steps 
for selecting the final set of correlated ground motions and show some representative example 
results. Finally, we summarize our conclusions, limitations of the study, and future work 
opportunities in Chapter 6. 
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2 Region-Specific Hazard Calculation  

Ground motion hazard curves express the annual exceedance rate of ground motion at the site as 
a function of a specified ground motion intensity measure (IM) level 𝑥𝑥, as described in Eq. (2.1) 
based on McGuire (2004),  

 𝜆𝜆(𝐼𝐼𝐼𝐼 > 𝑥𝑥) =  ∑ (𝑣𝑣𝑖𝑖𝑃𝑃(𝐼𝐼𝐼𝐼 > 𝑥𝑥 |𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖)) = 𝑁𝑁𝐸𝐸
𝑖𝑖=1 ∑ Λ𝑖𝑖(𝐼𝐼𝐼𝐼 > 𝑥𝑥) 𝑁𝑁𝐸𝐸

𝑖𝑖=1  (2.1) 

where 𝐼𝐼𝐼𝐼 is a log-normally distributed random variable whose mean and standard deviation are 
specified by ground motion models (GMMs) (e.g., Boore et al., 2014), x is a specific value of IM, 
𝜆𝜆(𝐼𝐼𝐼𝐼 > 𝑥𝑥) is the annual rate at which IM exceeds x due to all considered events (or total hazards), 
𝑁𝑁𝐸𝐸 is the total number of considered events, 𝑣𝑣𝑖𝑖 is the annual occurrence rate of the 𝑖𝑖th event, and 
𝑃𝑃(𝐼𝐼𝐼𝐼 > 𝑥𝑥 |𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖) is the probability that IM exceeds 𝑥𝑥 [shaded area in Figure 2.1(a)] given the 
event with magnitude 𝑀𝑀𝑖𝑖 and site-to-source distance 𝑅𝑅𝑖𝑖 occurs. The product of annual occurrence 
rate and exceedance probability is herein defined as Λ𝑖𝑖(𝐼𝐼𝐼𝐼 > 𝑥𝑥), which represents the annual 
ground motion exceedance rate or the hazard produced by event 𝑖𝑖 , which can also be 
conceptualized as an event-specific hazard curve. Given the predicted log-normal distribution by 
GMMs, 𝑓𝑓d(𝐼𝐼𝐼𝐼|𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖) (probability density function), the ground motion exceedance probability 
in the shaded area in Figure 2.1(a) can be calculated by 

 𝑃𝑃(𝐼𝐼𝐼𝐼 > 𝑥𝑥 |𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖) =  1 −Φ�𝑙𝑙𝑙𝑙(𝑥𝑥)−𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖) 
𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖)

� (2.2) 

where 𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖)  is the predicted logarithmic mean ground motion, 𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖)  is the 
associated standard deviation, Φ(∙) is the cumulative density function of the standard normal 
distribution, and 𝑙𝑙𝑙𝑙(𝑥𝑥)−𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖) 

𝜎𝜎𝐺𝐺𝐺𝐺𝐺𝐺(𝑀𝑀𝑖𝑖,𝑅𝑅𝑖𝑖)
 is the standardized 𝑧𝑧 value.  

For a site-specific PSHA in Eq. (2.1), the calculation is more commonly expressed as a 
summation of integrations over different magnitudes and distances for each considered event 
rather than a discrete summation over all events. The infinite set of possible events that might 
occur on a fault (e.g., fault rupture location and magnitude) is discretized into a discrete set of 
events with individual annual rates to set a rate of moment release that is compatible with the rate 
of moment build-up on a fault, which is strongly correlated with the slip rate on the fault. The rate 
for each discrete event is therefore a function of the fault slip rate and the discretization strategy, 
and selecting a larger number of events will result in lower annual rates for each event and vice-
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versa. Often, hundreds of thousands of events are considered [e.g., UCERF3 (Field et al. 2015) 
utilizes over 400,000 fault rupture events for California]. Hazard integrals are then evaluated 
numerically in discrete form. We represent them from the outset in the discrete form here, which 
is better suited for our scenario selection methodology.  

 

 

Figure 2.1. (a) Schematic plot of ground motion exceedance probability and (b) hazard curve. 

 
For the problem at hand, we wish to select a manageable subset of events that, in a least-squares 

sense, preserves the hazard curves at multiple sites for multiple intensity measures. Reducing the 
number of events requires an increase in the annual rate of each event to preserve hazard. 
Furthermore, we optionally wish to match, in a least squares sense, the magnitude and distance 
distributions from the PSHA disaggregation at each site and intensity measure level (or return 
period). Variables utilized in the derivation that follows are defined in Table 2.1.   

Table 2.1. Variables considered in regional PSHA. 

Meaning Index Number of elements 
Significant events i NE 

Site j NS 
Intensity measure type k NT 
Intensity measure level l NX 

Magnitude bins b NM 
Distance bins d NR 

 

Assuming the hazard curve [e.g., Figure 2.1(b)] at a site is represented in discrete form by NX 
number of separate 𝑥𝑥 values (intensity measure levels), we can define rank-1 and rank-2 tensors, 
𝜆𝜆𝑙𝑙1  and Λ𝑙𝑙,𝑖𝑖2 , to represent the total hazard curve and the hazard curve produced by each event 𝑖𝑖, 

respectively. The left superscripts 1 and 2 of 𝜆𝜆𝑙𝑙1  and Λ𝑙𝑙,𝑖𝑖2  indicate the ranks of the tensors, which 
are equal to the number of indices (i.e., the conditions that may be varied in a particular analysis, 
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as reflected by the different rows in Table 2.1). Therefore, Eq. (2.1) can be represented for one 
intensity measure type at one site by Eq. (2.3).  

 𝜆𝜆𝑙𝑙1 = ∑ Λ𝑙𝑙,𝑖𝑖2𝑁𝑁𝐸𝐸
𝑖𝑖=1  (2.3) 

Equivalently, we can also discretize the hazard curve horizontally by different hazard levels 𝜆𝜆 or 
return periods 𝑅𝑅𝑅𝑅 = 1/𝜆𝜆.  

For regional PSHA, 𝜆𝜆𝑙𝑙1  and Λ𝑙𝑙,𝑖𝑖2  must be computed at NS different sites (from 𝑗𝑗 = 1 to 𝑗𝑗 =
𝑁𝑁𝑆𝑆), which can be represented by adding an index j (𝑗𝑗 ∈ {1,⋯ ,𝑁𝑁𝑆𝑆}), thereby increasing the tensor 
ranks, as defined by Eq. (2.4).  

 𝜆𝜆𝑙𝑙,𝑗𝑗2 = ∑ Λ𝑙𝑙,𝑗𝑗,𝑖𝑖
3𝑁𝑁𝐸𝐸

𝑖𝑖=1  (2.4) 

Similarly, we can introduce different types of intensity measures (e.g., PGA, PGV, and pseudo-
spectral acceleration, PSA at different oscillator periods) by introducing an index 𝑘𝑘 
(𝑘𝑘 ∈ {1,⋯ ,𝑁𝑁𝑇𝑇}), thereby further increasing the tensor ranks as defined by Eq. (2.5). 

 𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘
3 = ∑ Λ𝑙𝑙,𝑗𝑗,𝑘𝑘 𝑖𝑖

4𝑁𝑁𝐸𝐸
𝑖𝑖=1  (2.5) 

Having now established equations for a single site single IM PSHA [Eq. (2.3)], a single IM 
regional PSHA [Eq. (2.4)], and a multi-IM regional PHSA [Eq. (2.5)], we will next describe our 
proposed regression-based method for event selection. Further expansion of tensor ranks to 
consider magnitude and distance distributions is discussed after defining the regression 
methodology.  
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3 Methodology for Scenario Earthquake Selection 

In this chapter, we will first describe LASSO regression as a tool for event selection. The method 
requires a tensor rank reduction transformation that is explained. We also present a new 
representation of magnitude and distance distributions from disaggregation such that they can be 
incorporated into the event selection framework.  

3.1 LASSO  

The Least Absolute Shrinkage and Selection Operator (LASSO) (also known as regression 
with L1 regularization) proposed by Tibshirani (1996) is a regularized regression method capable 
of performing variable selection. Unlike linear regression, which aims to find the best coefficients 
to minimize the sum of squared residuals, LASSO minimizes the sum of squared residuals and 
simultaneously reduces the number of variables. The LASSO regression formula and its objective 
function can be expressed by Eq. (3.1) and (3.2), 

 𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝜺𝜺 (3.1) 
 arg min𝜷𝜷 (𝒚𝒚 −  𝑿𝑿𝑿𝑿)𝑇𝑇(𝒚𝒚 −  𝑿𝑿𝜷𝜷) + 𝛾𝛾||𝜷𝜷||1 (3.2) 

where 𝒚𝒚 is the target response vector (i.e., a column of values), 𝑿𝑿 is the predictor matrix, 𝜷𝜷 is the 
coefficient vector, 𝜺𝜺 is the error variable (follows multivariate normal distribution), || ∙ ||1 is L1 
norm (sum of absolute values), (𝒚𝒚 −  𝑿𝑿𝑿𝑿)𝑇𝑇(𝒚𝒚 −  𝑿𝑿𝑿𝑿) is the error value, which is calculated as the 
inner product of  (𝒚𝒚 −  𝑿𝑿𝑿𝑿) (or sum of squared errors), and 𝛾𝛾 is a parameter to tune the model. 
Increasing 𝛾𝛾 will reduce the sum of squared errors (as this term has a larger contribution to the 
total objective function), which results in more zeros in 𝜷𝜷 , where zeros are interpreted as 
unselected variables (i.e., those associated columns in 𝑿𝑿 may be removed). On the other hand, 
decreasing 𝛾𝛾 leads to fewer zeros in 𝜷𝜷 but a better fit for a smaller sum of squared residuals. If 
𝛾𝛾 = 0, all of the variables are retained, and the LASSO regression is a multiple linear regression. 
We use bold notations to indicate vectors or matrices, which will be applied subsequently. In the 
context of multi-IM regional PSHA, if we substitute for 𝒚𝒚 with 𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘

3  and 𝑿𝑿 with Λ𝑙𝑙,𝑗𝑗,𝑘𝑘 𝑖𝑖
4 , then 

the LASSO regression can be used to simultaneously select event subsets and coefficients (i.e., 
adjusted event rates). However, 𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘

3  and Λ𝑙𝑙,𝑗𝑗,𝑘𝑘 𝑖𝑖
4  are rank-3 and rank-4 tensors, respectively, 

whereas 𝒚𝒚  and 𝑿𝑿  in LASSO must be a vector (rank-1 tensor) and a matrix (rank-2 tensor), 
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respectively. Thus, a rank reduction transformation is required before conducting LASSO 
regression for event selection.  

3.2 Tensor Rank Reduction Transformation 

We take 𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘
3  and Λ𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖

4  as examples to introduce a transformation method for tensor rank 
reduction. The transformation method is also effective for higher-order rank reductions that are 
required when magnitude and distance distributions from disaggregation are also considered 
during event selection. 

 In Figure 3.1, we use an example of a target hazard with three IM types (𝑁𝑁𝑇𝑇 = 3) for three IM 
levels (𝑁𝑁𝑋𝑋 = 3) at three sites (𝑁𝑁𝑆𝑆 = 3) to illustrate the method of reducing a rank-3 tensor 𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘

3  
to a rank-1 tensor 𝜆𝜆𝑞𝑞1 .  Each 3 by 3 block represents the regional hazard curves for each of the 
three IM types (i.e., 𝑘𝑘 = {1, 2, 3}). The three columns in each block are the hazard curves at three 
sites (i.e., 𝑗𝑗 = {1, 2, 3}). For each column, the entries in the three rows correspond to the annual 
exceedance rates at three different IM levels (i.e., 𝑙𝑙 = {1, 2, 3}), which are the outputs of PSHA. 
The long column on the right expresses the transformed rank-1 tensor, which is transformed 
relative to the previous rank-3 tensors, and is obtained by re-arranging the 3 by 3 grids according 
to Eq. (3.3), 

 
 𝑞𝑞 = 𝑙𝑙 + (𝑗𝑗 − 1) × 𝑁𝑁𝑋𝑋 + (𝑘𝑘 − 1) × 𝑁𝑁𝑋𝑋 × 𝑁𝑁𝑆𝑆 (3.3) 
 

 

Figure 3.1. An example of rank reduction transformation from a rank-3 tensor (with indices 𝑙𝑙, 𝑗𝑗,𝑘𝑘) to 
a rank-1 tensor (with index 𝑞𝑞) for a target hazard from all considered seismic sources. 

Figure 3.2 illustrates the rank reduction of the rank-4 tensor, which includes index 𝑖𝑖 for event 
(i.e., Λ𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖

4 ), to a rank-2 tensor ( Λ𝑞𝑞,𝑖𝑖
2 ). Each element in the rank-4 tensor represents the hazard 
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produced by a single event 𝑖𝑖, not the total hazard from PSHA (right side of Eq. 2.5). We use the 
same 3 by 3 block structure to represent the regional hazard curves produced by each event. For 
the illustration in Figure 3.2, we consider three events (i.e., 𝑖𝑖 = {1, 2, 3}), thus there are three 3 by 
3 blocks for each IM type. The three long columns on the right then express the transformed rank-
2 tensor, where each column corresponds to the hazard produced by a single event. 

 

Figure 3.2. An example of rank reduction transformation from a rank-4 tensor (with indices 𝑙𝑙, 𝑗𝑗,𝑘𝑘, 𝑖𝑖) 
to a rank-2 tensor (with indices 𝑞𝑞, 𝑖𝑖) for hazard produced by three events.  

The transformation implied by Eq. (3.3) provides one re-ordering rule for tensor rank reduction 
in which we first stack the hazard curves for each site, then by each intensity measure type. 
However, other re-ordering operations could also be utilized if each row 𝑞𝑞 in the total hazard 𝜆𝜆𝑞𝑞1  
vector is consistent with the corresponding row in the event hazard matrix Λ𝑞𝑞,𝑖𝑖

2  for the same IM 
level at the same site for the same IM type. 

 

3.3 Event Selection 

Following tensor rank reduction, we re-define the event selection by LASSO regression as,  

 𝝀𝝀 = 𝚲𝚲𝜷𝜷 + 𝜺𝜺 (3.4) 
 arg min𝜷𝜷 (𝝀𝝀 −  𝚲𝚲𝜷𝜷)𝑇𝑇𝑾𝑾(𝝀𝝀 −  𝚲𝚲𝜷𝜷) + 𝛾𝛾||𝜷𝜷||1 and subject to 𝜷𝜷 ≥ 𝟎𝟎  (3.5) 
 

where 𝝀𝝀 is the rank-1 total hazard 𝜆𝜆𝑞𝑞1  that replaces response vector 𝒚𝒚 from Eq. (3.1), and 𝚲𝚲 is the 
corresponding rank-2 hazard matrix Λ𝑞𝑞,𝑖𝑖  that replaces predictor matrix 𝑿𝑿  from Eq. 3.1. The 
column vector 𝜷𝜷 contains the associated rate adjustments for each event (or column) in 𝚲𝚲, and 𝜺𝜺 
represents the hazard misfits. For event 𝑖𝑖 with an original annual rate of occurrence 𝑣𝑣𝑖𝑖, the adjusted 
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rate after selection is 𝛽𝛽𝑖𝑖 × 𝑣𝑣𝑖𝑖 (𝛽𝛽𝑖𝑖 is the 𝑖𝑖-th element in 𝜷𝜷). We constrain all elements of 𝜷𝜷 to be 
non-negative (𝛽𝛽𝑖𝑖 ≥ 0) to ensure that adjusted rates are physically meaningful. We apply a weighted 
LASSO regression in which 𝑾𝑾 is a weighting diagonal matrix with diagonal elements equal to 
1/𝝀𝝀. We adopt this weighting scheme because hazard values are generally plotted on a log scale 
rather than a linear scale, and as a result, we apply equal weights to the logarithm of each data 
point in the regression. If this weighting was not applied, values at short return periods would have 
significantly more weight than those at long return periods (e.g. the weight for a return period of 
50 years would be 1/50, which is roughly 50 times that for a return period of 2475 years, which 
would be 1/2475). 

Equations 3.4 and 3.5 are fully general and can be applied for full PSHA without reducing the 
number of events by using all 𝑁𝑁𝐸𝐸 events to develop 𝚲𝚲, in which case 𝜷𝜷 = 𝟏𝟏 (all elements in 𝜷𝜷 are 
1) and 𝜺𝜺 = 𝟎𝟎 (all elements in 𝜺𝜺 are 0). For event selection, we seek a subset of 𝑛𝑛 events (𝑛𝑛 columns 
in 𝚲𝚲) from the complete set of 𝑁𝑁𝐸𝐸 events (𝑛𝑛 < 𝑁𝑁𝐸𝐸) and the corresponding rate adjustments in 𝜷𝜷 
that, in aggregate, are consistent with the total hazard 𝝀𝝀 at all sites, for all IM types, and all IM 
levels within certain error bounds represented by 𝜺𝜺. The regressed values of 𝜷𝜷 are generally higher 
than 1.0 because rates of events in the reduced event set must be higher than those in the full set 
to overcome the omission of the unselected events. The number of selected events equals the 
number of positive elements in 𝜷𝜷, which can be tuned by adjusting 𝛾𝛾.  

For a large region or a region where the seismicity is complex, the number of considered events 
(𝑁𝑁𝐸𝐸) for PSHA is large (e.g., over 400,000 fault rupture events and over 2,500 grid point sources 
for background seismicity from two branches modeled by UCERF3 in California). The number of 
columns in 𝚲𝚲 is equal to the number of events and inverting 𝚲𝚲 to solve for 𝜷𝜷 can therefore become 
computationally expensive. However, many of the events are unlikely to significantly influence 
seismic hazard at sites of interest and with a modest degree of approximation they can be excluded 
from the 𝚲𝚲  matrix before performing LASSO regression. The pre-selection of events can be 
conducted based on seismic hazard disaggregation results (Bazzurro and Cornell, 1999), in which 
only events that contribute more than a certain amount (e.g., 5%) to the hazard for any intensity 
measure at any site are included, as demonstrated subsequently.  

Since the output 𝜷𝜷 in LASSO are regularized coefficients (minimizing the sum of weighted 
squared errors and penalty term 𝛾𝛾||𝜷𝜷||1), the rate adjustments for the selected events are not 
optimal values to minimize hazard misfits. Therefore, we propose an additional refit (linear 
regression without penalty term) to re-calculate the optimal 𝜷𝜷 after subset events are selected. The 
complete event selection process can now be summarized as follows: 

i. Run a traditional PSHA to calculate the total hazard 𝝀𝝀 at each site for each intensity 
measure; 

ii. Use a pre-selected set of events that contribute significantly to the hazard based on 
disaggregation results to develop 𝚲𝚲; 
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iii. Run constrained (𝜷𝜷 ≥ 𝟎𝟎) weighted LASSO regression specified by Eq. (3.5) for a specified 
𝛾𝛾 to obtain a regularized coefficient vector, which is denoted 𝜷𝜷𝑳𝑳� ;  

iv. After selecting the event subset in iii, re-optimize Eq. (3.5) without 𝛾𝛾||𝜷𝜷||1 term (i.e., 
weighted least square) to obtain the updated regressed coefficient vector, 𝜷𝜷𝑹𝑹� . This 
regression is subject to the constraint that each element of 𝜷𝜷𝑹𝑹�  is positive;  

v. Repeat steps iii – iv for different 𝛾𝛾 values until the number of selected events equals a 
desired target.  

 

3.4 Matrix Representation of Magnitude and Distance Hazard 

The events selected using the LASSO regression procedure presented above can match hazard 
curves for multiple sites and multiple intensity measures, but the relative contributions of events 
with different magnitudes and source-to-site distances to the hazard are not likely to be preserved. 
Preserving magnitude and distance distributions may be necessary for some applications. For 
example, the triggering of soil liquefaction depends not only on shaking intensity but also on 
magnitude because longer-duration ground motions at a given shaking intensity are more likely to 
induce liquefaction. To incorporate magnitude and distance distributions into the LASSO 
framework, we must formulate their contributions to total hazard as a vector and contributions 
from considered events as a matrix that can then be included in the regression equations. In the 
case of the events matrix, since a given event has a particular magnitude and a particular source-
to-site distance, the event contributions will be calculated differently from total hazard 
contributions (which is explained below). For notational simplicity, we will express them as 
tensors first and then apply the rank reduction method to transform them into a vector and a matrix. 

 The target distributions of magnitude and distance are derived from disaggregation results, as 
illustrated by Figure 3.3(a). The heights of the blue bars indicate the relative contributions to a 
specified hazard level (i.e., intensity measure type and exceedance rate or return period) for binned 
values of magnitude and distance. The joint distribution of magnitude and distance for a given site, 
intensity measure, and return period is a rank-2 tensor 𝑃𝑃𝑏𝑏,𝑑𝑑

2 , where 𝑏𝑏 and 𝑑𝑑 are the magnitude and 
distance bin indices, respectively. Its dimension is 𝑁𝑁𝑀𝑀  by 𝑁𝑁𝑅𝑅 , where 𝑁𝑁𝑀𝑀  and 𝑁𝑁𝑅𝑅  represent the 
number of considered magnitude and distance bins, respectively.  

Alternatively, we can use marginal distributions as the target distributions, as illustrated in 
Figure 3.3(b) for magnitude. The benefit of using marginal distributions is that the target 
distribution size is reduced from (𝑁𝑁𝑀𝑀 × 𝑁𝑁𝑅𝑅)  to (𝑁𝑁𝑀𝑀 + 𝑁𝑁𝑅𝑅) , thereby reducing computational 
demand. For example, suppose we wish to select a subset of events from 𝑁𝑁𝐸𝐸 = 1000 events, while 
preserving hazard at 200 sites for 7 intensity measure levels and 7 intensity measure types. Suppose 
the joint distribution with 7 magnitude bins and 7 distance bins is also to be preserved. In that case, 
our experience suggests that we will require at least 30 GB of memory to load matrices for LASSO 
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regression (exceeding the capacity of a typical personal computer). However, if the marginal 
distribution is used, we only require about 8 GB of memory, and the computational time would be 
reduced by approximately a factor of ten. The drawback of using marginal distributions is that the 
joint distribution of magnitude and distance may not be preserved accurately.  

Marginal magnitude and distance distributions are calculated by summing the joint magnitude 
and distance disaggregation bars, shown in yellow and red columns in Figure 3.3(a). The marginal 
magnitude distribution is taken as an example and replotted in Figure 3.3 (b), in which the 
magnitude bin is denoted as 𝑚𝑚𝑏𝑏  and bar heights are denoted as 𝑃𝑃(𝑚𝑚𝑏𝑏), which represents the 
relative contribution to hazard from magnitude bin, 𝑚𝑚𝑏𝑏. We can also calculate the cumulative sum, 
𝐹𝐹(𝑚𝑚𝑏𝑏) = ∑ 𝑃𝑃(𝑚𝑚𝑧𝑧 ≥ 𝑚𝑚𝑏𝑏)𝑏𝑏

𝑧𝑧=1  where 𝑧𝑧 is the running index and plot 𝐹𝐹(𝑚𝑚𝑏𝑏) as in Figure 3.3(c). The 
cumulative sum 𝐹𝐹(𝑚𝑚𝑏𝑏) provides a form that is consistent with the hazard curves, which are also 
cumulative distribution functions. Similarly, the marginal distance distribution 𝑃𝑃(𝑟𝑟𝑑𝑑) (where 𝑟𝑟𝑑𝑑 is 
the 𝑑𝑑 -th distance bin) and cumulative sum of marginal distance distribution 𝐹𝐹(𝑟𝑟𝑑𝑑) =
∑ 𝑃𝑃(𝑟𝑟𝑧𝑧 ≥ 𝑟𝑟𝑑𝑑)𝑑𝑑
𝑧𝑧=1  can also be calculated. We adopt the notation 𝑃𝑃𝑏𝑏1  and 𝑃𝑃𝑑𝑑1  (rank-1 tensors) to 

represent the marginal magnitude and distance distributions and 𝐹𝐹𝑏𝑏1  and 𝐹𝐹𝑑𝑑1  (rank-1 tensors) to 
represent the marginal cumulative magnitude and distance distributions.  

 

Figure 3.3. A schematic plot of (a) disaggregation of the seismic hazard by magnitude and distance, 
(b) marginal magnitude distribution, and (c) the corresponding cumulative sum of 

marginal magnitude distribution.  

The joint distribution 𝑃𝑃𝑏𝑏,𝑑𝑑
2  and marginal distributions 𝑃𝑃𝑏𝑏1  and 𝑃𝑃𝑑𝑑1  (or 𝐹𝐹𝑏𝑏1  and 𝐹𝐹𝑑𝑑1 ) are 

derived from disaggregation results for a particular site, IM type, and IM level (equivalently, return 
period). If a regional multi-IMs hazard is analyzed, the calculation must be conducted repeatedly 
for all sites, IM types, and IM levels. A rank-5 tensor 𝑃𝑃𝑏𝑏,𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘

5  is used to represent the relative 
hazard contribution at IM level 𝑙𝑙 for IM type 𝑘𝑘 at site 𝑗𝑗 from the magnitude 𝑏𝑏 and distance 𝑑𝑑 bin. 
We can use two rank-4 tensors 𝑃𝑃𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘

4  and 𝑃𝑃𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘
4  (or 𝐹𝐹𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘

4  and 𝐹𝐹𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘
4 ) to represent the 
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marginal magnitude and distance distributions (or marginal cumulative sum distributions) for the 
magnitude 𝑏𝑏 bin and the distance 𝑑𝑑 bin, respectively, at IM level 𝑙𝑙 for IM type 𝑘𝑘 at site 𝑗𝑗. These 
distributions then must be multiplied by the corresponding hazard 𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘 (annual exceedance rate) 
to obtain the absolute hazard contribution distributions before incorporating them into LASSO 
regression. The reason for the multiplication is that we need to assign equal weights to magnitude 
and distance distributions as well as the ground motion hazards when optimizing the LASSO 
objective function. Taking the marginal magnitude and distance hazard distributions as an 
example, the calculations are,  

 𝜆𝜆𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘
4 = 𝑃𝑃𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘

4 ∘ 𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘  (3.6) 
 𝜆𝜆𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘

4 = 𝑃𝑃𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘
4 ∘ 𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘  (3.7) 

where ∘ represents Hadamard product (also known as the element-wise product). To incorporate 
Eqs. (3.6) and (3.7) into the LASSO framework, their ranks must be reduced to a rank-1 tensor or 
a vector. We use 𝝀𝝀𝑴𝑴 and 𝝀𝝀𝑹𝑹 to denote the transformed marginal magnitude and distance hazard 
vectors. The same procedure of rank reduction transformation illustrated in Figure 3.1 can be 
applied here. The index 𝑞𝑞 in Eq. (3.3) can now be updated for the marginal magnitude hazard 
distribution 𝜆𝜆𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘

4  transformation as, 

𝑞𝑞 = 𝑏𝑏 + (𝑙𝑙 − 1) × 𝑁𝑁𝑀𝑀 + (𝑗𝑗 − 1) × 𝑁𝑁𝑀𝑀 × 𝑁𝑁𝑋𝑋 + (𝑘𝑘 − 1) × 𝑁𝑁𝑀𝑀 × 𝑁𝑁𝑋𝑋 × 𝑁𝑁𝑆𝑆 (3.8) 

The same calculation can be applied to the index 𝑞𝑞 for the marginal distance hazard distribution.  

Similar to the event hazard matrix 𝚲𝚲 defined in Eq. 3.4 (composed of elements Λ𝑙𝑙,𝑗𝑗,𝑘𝑘 𝑖𝑖
4  in Eq. 

2.5), we also need to develop the hazard distribution matrix for each event. A particular event 𝑖𝑖 
has a specified magnitude, thus, the hazard produced by the event only contributes to the 
magnitude bin that includes the event magnitude and the hazard contribution for other magnitude 
bins should be zero. Equivalently, for a particular event 𝑖𝑖 and site 𝑗𝑗, the source-to-site distance is 
fixed and the hazard contribution from the event occurs only in the distance bin that includes that 
distance. Consequently, the following equations provide the marginal magnitude and distance 
distributions for event 𝑖𝑖, 

 Λ𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖
5 = �Λ𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖, 𝑚𝑚𝑖𝑖 ∈ (𝑚𝑚𝑏𝑏 −

∆𝑚𝑚
2

,𝑚𝑚𝑏𝑏 + ∆𝑚𝑚
2

)
0, otherwise

  (3.9) 

 Λ𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖
5 = �Λ𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖, 𝑟𝑟𝑖𝑖,𝑗𝑗 ∈ (𝑟𝑟𝑑𝑑 −

∆𝑟𝑟
2

, 𝑟𝑟𝑑𝑑 + ∆𝑟𝑟
2

)
0, otherwise

  (3.10) 

where 𝑚𝑚𝑖𝑖 is the magnitude of event 𝑖𝑖, 𝑟𝑟𝑖𝑖,𝑗𝑗 is source-to-site distance for event 𝑖𝑖 and site 𝑗𝑗, ∆𝑚𝑚 and 
∆𝑟𝑟 are the bin widths for magnitude and distance. These hazard distributions then need to be 
transformed into a rank-2 tensor by the procedure illustrated in Figure 3.2. The corresponding 
index 𝑞𝑞 is calculated by Eq. (3.8). We denote the transformed event hazard distribution matrix for 
magnitude and distance as 𝚲𝚲𝑴𝑴 and 𝚲𝚲𝑹𝑹.  
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To preserve the magnitude and distance hazard contribution in the event selection for regional 
multi-IM hazard analysis, we can expand 𝝀𝝀 and 𝜦𝜦 by including the magnitude and distance hazard 
distributions as,  

  𝝀𝝀′ = �
𝝀𝝀
𝝀𝝀𝑴𝑴
𝝀𝝀𝑹𝑹
� , 𝜦𝜦′ = �

𝚲𝚲
𝚲𝚲𝑴𝑴
𝚲𝚲𝑹𝑹

�  (3.11) 

If these expanded 𝝀𝝀′  and 𝜦𝜦′  are substituted for 𝝀𝝀 and 𝜦𝜦 in equations 3.4 and 3.5, the selected 
events will, in a least squares sense, match the hazard curves and simultaneously preserve 
magnitude and distance hazard distributions. 
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4 Methodology for Scenario Ground Motion 
Generation and Selection 

This chapter first describes the generation of correlated scenario ground motions using multivariate 
normal distribution randomization. Then it describes the tensor and matrix representation of hazard 
produced by each ground motion realization and implements LASSO regression for selection of a 
subset of hazard-consistent ground motion realizations.  

4.1 Correlated Scenario Ground Motion Generation  

Once the hazard-consistent scenario event subset is selected (Chapter 3), we will need to 
generate correlated ground motion realizations for the region for each event. We use a rank-3 
tensor, 𝑍𝑍𝑗𝑗,𝑖𝑖,𝑔𝑔

𝐺𝐺𝐺𝐺3 , to represent the simulated ground motion at site 𝑗𝑗 from event 𝑖𝑖 in realization 𝑔𝑔 for 
a single intensity measure (e.g., PGA). A vector representation of a single realization of ground 
motions from a particular scenario event (i.e., given 𝑖𝑖 and 𝑔𝑔) is provided with one entry per site, 
which is expressed as follows (note the 𝑖𝑖 and 𝑔𝑔 indices are dropped for simplicity), 

 𝒛𝒛� = 𝝁𝝁� + 𝜼𝜼� + 𝜹𝜹𝜹𝜹�  (4.1) 

where  

  𝒛𝒛� = �

ln (𝑧̃𝑧1)
ln (𝑧̃𝑧2)
⋮

ln (𝑧̃𝑧𝐽𝐽)

� (4.2) 

is the vector of generated ground motions in natural log units for 𝐽𝐽 sites (the tilde symbols indicate 
the values are simulated),  
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 𝝁𝝁� = �

ln (𝜇̂𝜇1)
ln (𝜇̂𝜇2)

⋮
ln (𝜇̂𝜇𝐽𝐽)

� (4.3) 

is the vector of predicted natural log median ground motions from a GMM (e.g., Boore et al., 2014) 
(the hat symbols indicate the values are estimated),  

 𝜼𝜼� = 𝜂𝜂� × �
1
1
⋮
1

� (4.4) 

is the vector of simulated event terms or event bias (note that there is a single event bias for one 
ground motion realization), and 

 𝜹𝜹𝜹𝜹� =

⎣
⎢
⎢
⎢
⎡𝛿𝛿𝛿𝛿
�1

𝛿𝛿𝛿𝛿�2
⋮

𝛿𝛿𝛿𝛿�𝐽𝐽⎦
⎥
⎥
⎥
⎤
 (4.5) 

is the vector of simulated within event residuals, which are different for each site. Typically, we 
assume that event term follows a univariate normal distribution,  

 𝜂𝜂�~𝑁𝑁(0, 𝜏̂𝜏2) (4.6) 

where 𝜏̂𝜏  is the between-event standard deviation, which is provided in GMMs. Within-event 
residuals are spatially correlated (Jayaram and Baker, 2009) and follow a multivariate normal 
distribution,  

 𝜹𝜹𝜹𝜹� ~𝑁𝑁(𝟎𝟎,𝚺𝚺) = 𝑁𝑁

⎝

⎜
⎛
�
0
0
⋮
0

� ,

⎣
⎢
⎢
⎢
⎡ 𝜙𝜙�1

2 𝜙𝜙�1𝜙𝜙�2𝜌𝜌1,2

𝜙𝜙�2𝜙𝜙�1𝜌𝜌2,1 𝜙𝜙�2
2

… 𝜙𝜙�1𝜙𝜙�𝐽𝐽𝜌𝜌1,𝐽𝐽

… 𝜙𝜙�2𝜙𝜙�𝐽𝐽𝜌𝜌2,𝐽𝐽

⋮ ⋮
𝜙𝜙�𝐽𝐽𝜙𝜙�1𝜌𝜌𝐽𝐽,1 𝜙𝜙�𝐽𝐽𝜙𝜙�2𝜌𝜌𝐽𝐽,2

⋱ ⋮
… 𝜙𝜙�𝐽𝐽

2
⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞

 (4.7) 

where  𝜙𝜙�𝑗𝑗 is the standard deviation of within event residuals for site 𝑗𝑗 (also provided by a GMM) 
and 𝜌𝜌𝑗𝑗,𝑗𝑗′ is the correlation of within event residuals between sites 𝑗𝑗 and 𝑗𝑗′. The standard deviations 
of event term and within event residual are usually modeled in a GMM, while the spatial 
correlation 𝜌𝜌𝑗𝑗,𝑗𝑗′  is not. Models for spatial correlation have been developed by applying 
geostatistical tools such as semivariograms to relatively small subsets of the ground motions 
considered in GMM development (e.g., Jayaram and Baker, 2009; Loth and Baker, 2013).  
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Once the standard deviations and correlations are estimated by a GMM and a correlation 
model, we can establish the complete distributions for 𝜂𝜂� and 𝜹𝜹𝜹𝜹�  and simulate realizations for 
event terms and within event residuals by multivariate normal distribution randomization. By 
performing the summation in Eq. (4.1), we generate the logarithmic ground motion realizations. 
We then repeat this routine for different events 𝑖𝑖 and different realizations 𝑔𝑔 to develop 𝑍𝑍𝑗𝑗,𝑖𝑖,𝑔𝑔

𝐺𝐺𝐺𝐺3 .  

Equations (4.1)-(4.7) describes ground motion generation when a single IM is considered, 
whereas in many applications we need to generate ground motion realizations in which multiple 
IMs are considered and their correlations (both spatially for each IM and between-IMs) are 
modelled. For example, in this project, we need to provide correlated ground motion realizations 
of PGA and PGV for subsequent seismic geo-hazard analyses. A rank-4 tensor, 𝑍𝑍𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔

𝐺𝐺𝐺𝐺4 , is used 
to represent the simulated ground motion at site 𝑗𝑗, IM 𝑘𝑘, event 𝑖𝑖, and ground motion realization 𝑔𝑔. 
Due to the correlation between different IMs, the multi-IMs simulations are not independent. A 
correlated realization of multi-IMs for a given event 𝑖𝑖 and for realization 𝑔𝑔 is expressed as a rank-
2 tensor 𝑍𝑍𝑘𝑘,𝑗𝑗

𝐺𝐺𝐺𝐺2 . We can apply the tensor transformation approach described in Ch. 3 to convert the 
rank-2 tensor to a long vector (stacking first by IM and then by site) to simplify the description. 
For example, if we consider two IMs, 𝑘𝑘1 and 𝑘𝑘2, Eq. (4.1) is updated as, 

 �
𝒛𝒛�𝒌𝒌𝟏𝟏
𝒛𝒛�𝒌𝒌𝟐𝟐

� = �
𝝁𝝁�𝒌𝒌𝟏𝟏
𝝁𝝁�𝟐𝟐

� + �
𝜼𝜼�𝒌𝒌𝟏𝟏
𝜼𝜼�𝒌𝒌𝟐𝟐

� + �
𝜹𝜹𝜹𝜹� 𝒌𝒌𝟏𝟏

𝜹𝜹𝜹𝜹� 𝒌𝒌𝟐𝟐
� (4.8) 

where 

 �
𝒛𝒛�𝒌𝒌𝟏𝟏
𝒛𝒛�𝒌𝒌𝟐𝟐

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ln (𝑧̃𝑧𝑘𝑘1,1)
ln (𝑧̃𝑧𝑘𝑘1,2)

⋮
ln (𝑧̃𝑧𝑘𝑘1,𝐽𝐽)
ln (𝑧̃𝑧𝑘𝑘2,1)
ln (𝑧̃𝑧𝑘𝑘2,2)

⋮
ln (𝑧̃𝑧𝑘𝑘2,𝐽𝐽)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.9) 

is the vector of simulated logarithmic ground motions for the region with 𝐽𝐽 sites for IM 𝑘𝑘1 (the 
first 𝐽𝐽 rows in the vector) and IM 𝑘𝑘2 (the second 𝐽𝐽 rows in the vector),  
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 �
𝝁𝝁�𝒌𝒌𝟏𝟏
𝝁𝝁�𝒌𝒌𝟐𝟐

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ln (𝜇̂𝜇𝑘𝑘1,1)
ln (𝜇̂𝜇𝑘𝑘1,2)

⋮
ln (𝜇̂𝜇𝑘𝑘1,𝐽𝐽)
ln (𝜇̂𝜇𝑘𝑘2,1)
ln (𝜇̂𝜇𝑘𝑘2,2)

⋮
ln (𝜇̂𝜇𝑘𝑘2,𝐽𝐽)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.10) 

is the vector of predicted median logarithmic ground motions from GMMs for IMs 𝑘𝑘1 and 𝑘𝑘2,  

 �
𝜼𝜼�𝒌𝒌𝟏𝟏
𝜼𝜼�𝒌𝒌𝟐𝟐

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜂𝜂�𝑘𝑘1
𝜂𝜂�𝑘𝑘1
⋮
𝜂𝜂�𝑘𝑘1
𝜂𝜂�𝑘𝑘2
𝜂𝜂�𝑘𝑘2
⋮
𝜂𝜂�𝑘𝑘2⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.11) 

is the vector of simulated event terms for IMs 𝑘𝑘1 and 𝑘𝑘2, and 

 �
𝜹𝜹𝜹𝜹� 𝒌𝒌𝟏𝟏

𝜹𝜹𝜹𝜹� 𝒌𝒌𝟐𝟐
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝛿𝛿𝛿𝛿
�𝑘𝑘1,1

𝛿𝛿𝛿𝛿�𝑘𝑘1,2
⋮

𝛿𝛿𝛿𝛿�𝑘𝑘1,𝐽𝐽

𝛿𝛿𝛿𝛿�𝑘𝑘2,1

𝛿𝛿𝛿𝛿�𝑘𝑘2,2
⋮

𝛿𝛿𝛿𝛿�𝑘𝑘2,𝐽𝐽⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.12) 

is the vector of simulated within event residuals for IMs 𝑘𝑘1 and 𝑘𝑘2. The event terms for IMs 𝑘𝑘1 
and 𝑘𝑘2 are described by a bivariate normal distribution,  

 �
𝜂𝜂�𝑘𝑘1
𝜂𝜂�𝑘𝑘2

�~𝑁𝑁��00� , �
𝜏̂𝜏𝑘𝑘1

2 0
0 𝜏̂𝜏𝑘𝑘2

2�� (4.13) 

where the diagonal elements are the corresponding variances of event terms from GMMs for IMs 
𝑘𝑘1 and 𝑘𝑘2, and the off-diagonal element is the covariance of event terms, which is usually assumed 
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to be zero. For within event residuals of 𝐽𝐽 sites for 𝑘𝑘1 and 𝑘𝑘2, the multivariate normal distribution 
is  

  �
𝜹𝜹𝜹𝜹� 𝒌𝒌𝟏𝟏

𝜹𝜹𝜹𝜹� 𝒌𝒌𝟐𝟐
�~𝑁𝑁 ��𝟎𝟎𝟎𝟎� , �

𝚺𝚺𝒌𝒌𝟏𝟏 𝚺𝚺𝒌𝒌𝟏𝟏,𝒌𝒌𝟐𝟐
𝚺𝚺𝒌𝒌𝟐𝟐,𝒌𝒌𝟏𝟏 𝚺𝚺𝒌𝒌𝟐𝟐

�� (4.14) 

where 𝚺𝚺𝒌𝒌𝟏𝟏 and 𝚺𝚺𝒌𝒌𝟐𝟐  are the covariance matrices among 𝐽𝐽 sites for IMs 𝑘𝑘1 and 𝑘𝑘2, respectively, in 
the same manner as the 𝚺𝚺 in Eq. (4.7). The off-diagonal matrix 𝚺𝚺𝒌𝒌𝟏𝟏,𝒌𝒌𝟐𝟐 (or 𝚺𝚺𝒌𝒌𝟐𝟐,𝒌𝒌𝟏𝟏) is the covariance 
matrix considering spatial correlation and cross-IMs correlation, which is expressed as,  

 𝚺𝚺𝒌𝒌𝟏𝟏,𝒌𝒌𝟐𝟐 =

⎣
⎢
⎢
⎢
⎡𝜙𝜙
�𝑘𝑘1,1𝜙𝜙�𝑘𝑘2,1𝜌𝜌𝑘𝑘1−1,𝑘𝑘2−1

𝜙𝜙�𝑘𝑘1,1𝜙𝜙�𝑘𝑘2,2𝜌𝜌𝑘𝑘1−1,𝑘𝑘2−2

𝜙𝜙�𝑘𝑘1,2𝜙𝜙�𝑘𝑘2,1𝜌𝜌𝑘𝑘1−2,𝑘𝑘2−1
𝜙𝜙�𝑘𝑘1,2𝜙𝜙�𝑘𝑘2,2𝜌𝜌𝑘𝑘1−2,𝑘𝑘2−2

… 𝜙𝜙�𝑘𝑘1,1𝜙𝜙�𝑘𝑘2,𝐽𝐽𝜌𝜌𝑘𝑘1−1,𝑘𝑘2−𝐽𝐽

… 𝜙𝜙�𝑘𝑘1,2𝜙𝜙�𝑘𝑘2,𝐽𝐽𝜌𝜌𝑘𝑘1−2,𝑘𝑘2−𝐽𝐽
⋮ ⋮

𝜙𝜙�𝑘𝑘1,𝐽𝐽𝜙𝜙�𝑘𝑘2,1𝜌𝜌𝑘𝑘1−𝐽𝐽,𝑘𝑘2−1
𝜙𝜙�𝑘𝑘1,𝐽𝐽𝜙𝜙�𝑘𝑘2,2𝜌𝜌𝑘𝑘1−𝐽𝐽,𝑘𝑘2−2

⋱ ⋮
… 𝜙𝜙�𝑘𝑘1,𝐽𝐽𝜙𝜙�𝑘𝑘2,𝐽𝐽𝜌𝜌𝑘𝑘1−𝐽𝐽,𝑘𝑘2−𝐽𝐽 ⎦

⎥
⎥
⎥
⎤
 (4.15) 

where 𝜙𝜙�𝑘𝑘1,𝑗𝑗 and  𝜙𝜙�𝑘𝑘2,𝑗𝑗 are the standard deviations of within event residuals at site 𝑗𝑗 for IMs 𝑘𝑘1 and 
𝑘𝑘2, and 𝜌𝜌𝑘𝑘1−𝑗𝑗,𝑘𝑘2−𝑗𝑗′  is the correlation between within event residuals at site 𝑗𝑗 for IM 𝑘𝑘1 and site 𝑗𝑗′ 
for IM 𝑘𝑘2. Loth and Baker (2013) provide a correlation model for this cross-IM spatial correlation. 
Once these distributions are established, we can implement multivariate normal distribution 
randomization to generate a correlated ground motion realization for PGA and PGV. By repeating 
the generation for different events 𝑖𝑖 and different realizations 𝑔𝑔, we establish the complete rank-4 
tensor of ground motion realizations 𝑍𝑍𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔

𝐺𝐺𝐺𝐺4 . 

4.2 Hazard-Consistent Ground Motion Maps Selection  

The procedure described in Section 4.1 can be applied to generate as many correlated ground 
motion realizations as needed from each of the selected hazard-consistent events from Chapter 3. 
For seismic risk analysis of spatially distributed infrastructure systems, analysis run times may 
dictate that a reduced set of ground motion realizations need to be generated. To meet this need, 
we adapt the procedure of Han and Davidson (2012), which begins by generating a large number 
of correlated ground motion realizations from each selected event to ensure that extreme ground 
motion (at the tails of ground motion distributions) are captured. For the present analyses, we 
generated 𝑛𝑛𝐺𝐺 = 50 ground motion realizations per event. Next we combine all ground motion 
realizations to develop a hazard matrix 𝚲𝚲𝑮𝑮𝑮𝑮  in the same manner as hazard matrix 𝚲𝚲  for the 
considered events in Chapter 3 (Eq. 3.4). We then implement LASSO regression to select ground 
motion realizations and estimate their hazard-consistent annual occurrence rates. The development 
of 𝚲𝚲𝑮𝑮𝑮𝑮 includes two steps, converting ground motion maps 𝑍𝑍𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔

𝐺𝐺𝐺𝐺4  to hazard curves Λ𝑙𝑙,𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔
𝐺𝐺𝐺𝐺5  

and conducting tensor reduction to transform Λ𝑙𝑙,𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔
𝐺𝐺𝐺𝐺5  to 𝚲𝚲𝑮𝑮𝑮𝑮.  
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A hazard curve for IM type 𝑘𝑘 at site 𝑗𝑗 is a series of annual exceedance rates at different IM 
levels 𝑙𝑙, as shown by the data points along the hazard curve in Figure 4.1. For a particular event 𝑖𝑖 
with the corrected annual occurrence rate 𝑣𝑣𝑖𝑖′ (𝑣𝑣𝑖𝑖′ = 𝛽𝛽𝑖𝑖 × 𝑣𝑣𝑖𝑖 from Chapter 3), suppose 𝑛𝑛𝑔𝑔 ground 
motion realizations are generated. The annual occurrence rate for each realization 𝑔𝑔 is 𝛼𝛼𝑖𝑖,𝑔𝑔 = 𝑣𝑣𝑖𝑖′ ÷
𝑛𝑛𝑔𝑔  (each map is generated with equal likelihood). To illustrate the conversion from a ground 
motion to a hazard curve, we take the annual occurrence rate of a simulated ground motion 
realization 𝑔𝑔 generated for event 𝑖𝑖 as 𝛼𝛼𝑖𝑖,𝑔𝑔 = 0.001, and the simulated ground motion for IM type 
𝑘𝑘 at site 𝑗𝑗 is exp� 𝑍𝑍𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔

𝐺𝐺𝐺𝐺4 � = 0.01, then the associated exceedance rate of this ground motion is 
expressed as  

 Λ𝑙𝑙,𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔
𝐺𝐺𝐺𝐺5 = �0.001,  𝐼𝐼𝐼𝐼 level 𝑙𝑙 < 0.01

0, otherwise   (4.16) 

which is shown by the red curve in Figure 4.1.  

 

Figure 4.1. A schematic plot of the hazard produced a ground motion. 

This conversion can be repeated for all IM type 𝑘𝑘  at site 𝑗𝑗  from event 𝑖𝑖  for ground motion 
realization 𝑔𝑔 to obtain the complete rank-5 tensor Λ𝑙𝑙,𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔

𝐺𝐺𝐺𝐺5  for all realizations. 

To incorporate Λ𝑙𝑙,𝑘𝑘,𝑗𝑗,𝑖𝑖,𝑔𝑔
𝐺𝐺𝐺𝐺5  into LASSO to conduct the selection process, we transform the rank-

5 tensor into a matrix 𝚲𝚲𝑮𝑮𝑮𝑮 and replace 𝚲𝚲 with 𝚲𝚲𝑮𝑮𝑮𝑮 in Eqs. (3.4) and (3.5). In 𝚲𝚲, we need to make 
sure the index of row 𝑞𝑞 is consistent with the target hazard 𝝀𝝀 and each column is associated with 
each considered event. Then for 𝚲𝚲𝑮𝑮𝑮𝑮, we keep the same row order as defined by Eq. (3.3) and 



25 
 

each column is associated with a ground motion realization. For row index 𝑞𝑞 in 𝚲𝚲𝑮𝑮𝑮𝑮, we apply Eq. 
(3.3). Column index 𝑝𝑝 combines indices for event 𝑖𝑖 and realization 𝑔𝑔, such that  

 𝑝𝑝 = 𝑔𝑔 + (𝑖𝑖 − 1) × 𝑁𝑁𝐸𝐸′ (4.17) 

where 𝑁𝑁𝐸𝐸′ is the number of selected events.   
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5 Hazard-Consistent Scenario Results 

Point-based PHSA was conducted by Al Atik et al. (2022) at 19,316 sites (with a grid spacing of 
0.05 by 0.05 degrees in longitude and latitude) in California, locations of which are shown in 
Figure 5.1. For subsequent geo-hazard analyses (Stewart et al. 2023), we require hazard-consistent 
correlated PGA and PGV ground motion realizations. Incorporating all 19,316 sites into LASSO 
would require more than 1TB of memory, which is practically impossible given the currently 
available computation resources. Since this project aims to assess seismic risk for California 
natural gas pipelines (red lines in Figure 5.1), we only enforce hazard-consistency for sites close 
to the gas pipelines and allow hazard discrepancies for other sites. We drew a buffer with a 1 km 
width along the natural gas pipelines and chose the sites within the buffer as the target sites, which 
led to 1,220 sites shown in Figure 5.2. These sites were overall evenly distributed along all 
pipelines with a few small segments missing.  

 

Figure 5.1. A map of all PSHA sites considered by Al Atik et al. (2023). 
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Figure 5.2.  A map of selected PSHA sites for selection of hazard-consistent ground motion 
realizations. 

The results provided by Al Atik et al. (2022) include hazard curves for 20 IM levels for the IM 
types of PGA and PGV for the reference site condition of VS30 (time-averaged shear wave 
velocities in the upper 30 m of the site) = 760 m/s. We utilize these results for the 1,220 selected 
sites along with disaggregations at each site for both IM types and all considered IM levels (the 
disaggregations are not at specified exceedance rates). Because the analysis framework described 
in Chapters 3 and 4 takes the ground motions for a given return period range (i.e., 200 years to 
2,475 years) as input, we convert the IM level range provided from the hazard analysis to a 
standardized return period range (note the number of selected IM levels for the same return period 
range differs at different sites due to different hazard curves). The corresponding hazard curve 
segments and disaggregations are then used to develop target hazard vector 𝝀𝝀 and hazard matrix 
from considered events 𝚲𝚲 or considered ground motion realizations 𝚲𝚲𝑮𝑮𝑮𝑮. 
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5.1 Hazard-Consistent Scenario Events 

Al Atik et al. (2022) considered more than 400,000 fault rupture events and over 2,500 grid 
point sources for background seismicity from two branches in UCERF3 (Field et al. 2015) (i.e., 
𝑁𝑁𝐸𝐸 > 400,000 ). As a result, it would be cumbersome to use all events to develop the 
corresponding event hazard matrix 𝚲𝚲, which we instead developed using a subset of important 
representative events based on disaggregation results. Figure 3.3(a) shows a typical disaggregation 
result for one IM type at one IM level (or return period) at one site. The disaggregation reveals that 
only a small subset of magnitude-distance bins are important (i.e., many events do not contribute 
significantly to hazard). Moreover, while many events within the UCERF3 model may contribute 
within a single magnitude-distance bin, they would provide similar ground motion distributions. 
Therefore, we pre-select a subset of important representative events by taking only one event from 
each magnitude-distance bin that has a relative contribution larger than a threshold value. This 
process is repeated for all sites, all IM types, and all IM levels. The selection of an appropriate 
threshold relative contribution level is an important consideration. Higher thresholds decrease 
computation time and decrease the number of pre-selected events (fewer magnitude-distance bins 
are included), whereas lower thresholds will result in more pre-selected events and better hazard 
matches to develop 𝚲𝚲. We found a threshold of 10% for multi-fault rupture events and 5% for 
gridded point sources balances goodness-of-match and efficiency for this study region. The 
outcome of this process for the present study region with 1,220 sites for two IM types and multiple 
IM levels for a return period from 200 years to 2,475 years is that 7,700 events are pre-selected 
(including fault ruptures and point sources). We used these pre-selected events to establish 𝚲𝚲 (Eq. 
3.4). The calculation of 𝚲𝚲 from the pre-selected events has been implemented in an R package, 
RPSHA (Wang, 2022). More specifically, the calculations were conducted using the functions 
event_haz_calc and events_hazmat_calc. (Note the annual rate of occurrence of each pre-selected 
event, 𝑣𝑣𝑖𝑖, is also required to calculate the final corrected rates). The computation was conducted 
using High Performance Computing (HPC) infrastructure at Old Dominion University.  

A case study by Wang et al. (202x) found that if magnitude hazard marginal distributions were 
not incorporated in event selection, their distributions could be poorly preserved. However, the 
marginal distance distributions were generally acceptable with and without their distributions 
incorporated into LASSO selection. Considering the significance of event magnitude for geo-
hazards analyses and heavy computation demands, we incorporated only magnitude marginal 
distributions into the LASSO regressions. Thus, the target hazard vector 𝝀𝝀′ and hazard matrix 𝜦𝜦′ 
are,  

  𝝀𝝀′ = � 𝝀𝝀𝝀𝝀𝑴𝑴
� , 𝜦𝜦′ = � 𝚲𝚲𝚲𝚲𝑴𝑴

�  (5.1) 

The LASSO regression method was then performed following steps iii – v described in Chapter 
3.3 as implemented by the function scenario_selection in the RPSHA package. The results 
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provided by this package are a series of selected events and their corresponding rate adjustments 
𝜷𝜷𝑹𝑹� .  

We use the mean of absolute arithmetic relative errors [in a similar form as the MHCE used in 
Han and Davidson (2012)] to quantitatively measure the goodness-of-match of hazard curves from 
the selected events, which is defined as 

𝑒𝑒𝑒𝑒𝑟𝑟3 = 1
𝑁𝑁𝑆𝑆×𝑁𝑁𝑇𝑇×𝑁𝑁𝑋𝑋×(𝑁𝑁𝑀𝑀+𝑁𝑁𝑅𝑅)

(𝑒𝑒ℎ + 𝑒𝑒𝑚𝑚 +  𝑒𝑒𝑑𝑑)  (5.2) 

where 

𝑒𝑒ℎ = ∑ ∑ ∑ �
𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘
3 −∑ Λ𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖

4𝑖𝑖=𝑁𝑁𝐸𝐸
𝑖𝑖=1 ∗𝛽𝛽𝚤𝚤�

𝜆𝜆𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘
3 �𝑙𝑙=𝑁𝑁𝑋𝑋

𝑙𝑙=1
𝑘𝑘=𝑁𝑁𝑇𝑇
𝑘𝑘=1

𝑗𝑗=𝑁𝑁𝑆𝑆
𝑗𝑗=1   (5.3) 

 is the sum of absolute arithmetic errors for hazard curves,  

𝑒𝑒𝑚𝑚 = ∑ ∑ ∑ ∑ �
𝜆𝜆𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘
4 −∑ Λ𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖

5𝑖𝑖=𝑁𝑁𝐸𝐸
𝑖𝑖=1 ∗𝛽𝛽𝚤𝚤�

𝜆𝜆𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘
4 �𝑏𝑏=𝑁𝑁𝑀𝑀

𝑏𝑏=1
𝑙𝑙=𝑁𝑁𝑋𝑋
𝑙𝑙=1

𝑘𝑘=𝑁𝑁𝑇𝑇
𝑘𝑘=1

𝑗𝑗=𝑁𝑁𝑆𝑆
𝑗𝑗=1   (5.4) 

is the sum of absolute arithmetic errors for magnitude distribution, and  

𝑒𝑒𝑑𝑑 = ∑ ∑ ∑ ∑ �
𝜆𝜆𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘
4 −∑ Λ𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑖𝑖

5𝑖𝑖=𝑁𝑁𝐸𝐸
𝑖𝑖=1 ∗𝛽𝛽𝚤𝚤�

𝜆𝜆𝑑𝑑,𝑙𝑙,𝑗𝑗,𝑘𝑘
4 �𝑑𝑑=𝑁𝑁𝑅𝑅

𝑑𝑑=1
𝑙𝑙=𝑁𝑁𝑋𝑋
𝑙𝑙=1

𝑘𝑘=𝑁𝑁𝑇𝑇
𝑘𝑘=1

𝑗𝑗=𝑁𝑁𝑆𝑆
𝑗𝑗=1   (5.5) 

is the sum of absolute arithmetic errors for distance distribution. In this study, since we only 
consider hazard curves and magnitude marginal distributions, then Eq. (5.2) is simplified as,  

𝑒𝑒𝑒𝑒𝑟𝑟3 = 1
𝑁𝑁𝑆𝑆×𝑁𝑁𝑇𝑇×𝑁𝑁𝑋𝑋×𝑁𝑁𝑀𝑀

(𝑒𝑒ℎ + 𝑒𝑒𝑚𝑚)  (5.6) 

Two additional error metrics, 𝑒𝑒𝑒𝑒𝑟𝑟1 and 𝑒𝑒𝑒𝑒𝑟𝑟2, are also provided by the RPSHA package. Although 
the error values differ among the three error metrics, they show consistent trends. We then plot the 
𝑒𝑒𝑒𝑒𝑟𝑟3 in Figure 5.3 as a function of the number of events. The error decreases as the number of 
selected events increases and eventually converges to a small value. The errors shown in Figure 
5.3 could be further reduced by lowering relative contribution thresholds when pre-selecting 
representative events from disaggregations. We then select a specific number of selected events 
based on the error decay curve. This is an admittedly subjective decision, but we select a point 
where the slope of the curve is relatively flat, which is 599 events. Of these 599 events, 158 are 
ruptures on mapped faults and 441 are grid point source events.  
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Figure 5.3. Variation of error metric 𝑒𝑒𝑒𝑒𝑟𝑟3 versus the number of selected events. 

Figure 5.4 compares PGA and PGV hazard curves from full hazard calculations to those 
recovered from the 599 reduced events with adjusted rates. Results are shown for three 
representative sites (site 11339, 07488, and 02410 in Figure 5) in the Bay Area, Central Valley, 
and Los Angeles. The results show that over the considered range of rates (from 1

200
= 0.005 to 

1
2475

= 0.0004, which are indicated by two purple horizontal lines) the discrepancies in hazard 
curves are minor. The error term computed using Eq. (5.6) is 𝑒𝑒𝑒𝑒𝑟𝑟3 = 0.066. Comparisons for other 
sites show the same trend and are not presented here for brevity. We plot the target and recovered 
hazard curves at all 1,220 sites on the same graph in Figure 5.5. The well-overlapping lines indicate 
good fitting and unbiasedness.  

 

Figure 5.4.  Plots of recovered hazard curves by the 599 selected events from LASSO regression (red 
dashed line) and the target mean hazard from full PSHA (blue solid line) at three 
representative sites. 
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Figure 5.5.  Plots of recovered hazard curves from the 599 selected events by LASSO regression (red 
dashed line) and the target mean hazard from full PSHA (blue solid line) for all 1,220 
target sites. 

Figure 5.6 shows cumulative marginal magnitude distributions for PGA and PGV at the return 
period of about 1,000 years at the three representative sites. The blue solid lines are the target 
distributions based on disaggregation from full PSHA, while the red dashed lines are the calculated 
recovered cumulative distributions from the reduced subset of 599 selected events. Overall, the 
red dashed lines match blue solid lines reasonably well for small to large magnitudes but mismatch 
for extremely large magnitudes (greater than 8.5). The reason is that the annual exceedance rates 
associated with extremely large magnitude are very small and much smaller than 0.0004 (the 
smallest annual exceedance rate considered in event selection). The plots for other sites and return 
periods show a similar trend, so we conclude that the selected 599 events are hazard-consistent 
and preserve the magnitude distributions. 

 

 

Figure 5.6.  Marginal magnitude distribution plots for PGA and PGV hazards at three sites. The 
results apply for the 1000-year return period hazard level. LASSO regression results (red 
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dashed line) shown in the figure apply for 599 selected events by LASSO regression 
configured to match target mean hazard curves for both intensity measures and target 
magnitude distributions (blue solid line). 

5.2 Hazard-Consistent Correlated Scenario Ground Motion Maps 

Given the 599 selected hazard-consistent events, we followed the procedure in Chapter 4.1 to 
generate 50 correlated PGA-PGV ground motion realizations per event. We applied Eq. (4.16) to 
convert the generated ground motion realizations to hazard curves. Rank reduction transformation 
was then implemented to obtain a hazard matrix 𝚲𝚲𝑮𝑮𝑮𝑮. Magnitude and distance distributions can 
be derived from ground motion realizations. However, due to heavy computation demand, we did 
not undertake this analysis. Instead, we only selected ground motion realizations targeted at 
matching hazard curves. Through this process, we use the target hazard vector 𝝀𝝀 and replace 𝚲𝚲 
with 𝚲𝚲𝑮𝑮𝑮𝑮 in Eqs. (3.3) and (3.4) to conduct ground motion realization selection and obtain their 
hazard-consistent annual occurrence rates.  

Since we did not consider magnitude distribution in LASSO, the 𝑒𝑒𝑒𝑒𝑟𝑟3  for ground motion 
realization selection is updated as,  

𝑒𝑒𝑒𝑒𝑟𝑟3 = 𝑒𝑒ℎ
𝑁𝑁𝑆𝑆×𝑁𝑁𝑇𝑇×𝑁𝑁𝑋𝑋

  (5.7) 

where 

𝑒𝑒ℎ = ∑ ∑ ∑ �
𝜆𝜆𝑙𝑙,𝑗𝑗,𝑘𝑘
3 −∑ Λ𝑙𝑙,𝑗𝑗,𝑘𝑘,𝑝𝑝

4𝑝𝑝=𝑁𝑁𝐺𝐺
𝑝𝑝=1 ∗𝛽𝛽𝑝𝑝�

𝜆𝜆𝑏𝑏,𝑙𝑙,𝑗𝑗,𝑘𝑘
3 �𝑙𝑙=𝑁𝑁𝑋𝑋

𝑙𝑙=1
𝑘𝑘=𝑁𝑁𝑇𝑇
𝑘𝑘=1

𝑗𝑗=𝑁𝑁𝑆𝑆
𝑗𝑗=1   (5.8) 

is the sum of the absolute relative error of hazard curves produced by the selected ground motion 
maps, 𝑝𝑝 is the running column (or realization) index defined by Eq. (4.17), and 𝑁𝑁𝐺𝐺 = 𝑁𝑁𝐸𝐸′ × 𝑛𝑛𝐺𝐺  is the 
total number of ground motion realizations where 𝑁𝑁𝐸𝐸′ is the number of selected events and 𝑛𝑛𝐺𝐺  is the 
number of simulated realizations per event. The plot of 𝑒𝑒𝑒𝑒𝑟𝑟3 versus the number of selected ground 
motion realizations is shown in Figure 5.7. The error decreases as the number of selected ground 
motion realizations increases. Selection of the preferred number of selected realizations is subjective, 
but we recommend it be taken from the relatively flat part of the curve. Applying such criterion, about 
5,000 realizations would be selected, which is much more than is practical for geo-hazards analyses. 
In consideration of run times and available human resources in this project, 25 maps were selected. 
This produces 𝑒𝑒𝑒𝑒𝑟𝑟3 ≈ 0.8, which is much larger than 0.066 obtained when conducing event selection. 
This is expected because the hazard curve produced by an event is a smooth curve, whereas the hazard 
curve from a ground motion realization is stepped (Figure 4.1). Many more maps would be required 
to smooth out hazard curves derived from ground motion realizations.  
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Figure 5.7. Variation of error metric 𝑒𝑒𝑒𝑒𝑟𝑟3 versus the number of selected realizations. 

Figure 5.8 compares PGA and PGV hazard curves from full hazard calculations to those 
recovered from the 25 selected ground motion scenarios with adjusted hazard-consistent rates for 
the same three representative sites. The overall mismatches are much larger than those we observed 
from selected events in Figure 5.4. In addition, the recovered PGA hazard curves are consistently 
lower than the target mean hazard curves at three sites, while PGV hazard curves show slightly 
better fitting. Because the maps are selected by minimizing the errors of PGA and PGV hazard 
curves at 1,220 sites, it is expected that for some sites, the hazard curves are underestimated, and 
for other sites, the hazard curves are overestimated. We plot hazard curves and the recovered 
hazard curves from 25 realizations at all 1,220 sites in Figure 5.9. The red dashed lines do not 
overlap well with the blue solid lines, indicating relatively poor fitting. However, when looking at 
the mean trends of all red dashed lines, they are roughly aligned with blue solid lines, which 
implies an overall lack of bias.  
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Figure 5.8. Plots of recovered hazard curves by the 25 selected ground motion maps by the LASSO 
regression method (red dashed line) and the target mean hazard from full PSHA (blue 

solid line) at three representative sites. 

 

Figure 5.9. Plots of recovered hazard curves by the 25 selected ground motion maps by the LASSO 
regression method (red dashed line) and the target mean hazard from full PSHA (blue 

solid line) at 1,220 sites. 

The number of selected ground motion realizations, 25, is constrained by the computation 
demand for the subsequent geo-hazard analyses. If the number of selected ground motion 
realizations could be larger, the recovered hazard curves fitting would be improved. In Figure 5.10, 
we plot the recovered hazard curves with 200 ground motion maps to illustrate smaller 
mismatches.  
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Figure 5.10. Plots of recovered hazard curves from 200 selected ground motion realizations by the 
LASSO regression method (red dashed line) and the target mean hazard from full PSHA 
(blue solid line) at 1,220 sites. 

5.3 Co-Kriging Interpolation for Hazard-Consistent Correlated Ground Motion 
Maps 

As described above, the ground motions realizations were generated and selected at 1,220 sites 
(shown in Figure 5.2). For geo-hazard analysis, higher resolution maps (with a spacing of 100 
meters) are required, so interpolation is needed. Since PGA and PGV are correlated, we need to 
consider spatial and cross IMs correlations when interpolating. PGA and PGV can be considered 
as two covariates at each site. Accordingly, when interpolating these IMs for a new site, a vector 
of two covariates needs to be estimated simultaneously. Co-Kriging is a geostatistical tool that can 
perform correlated multivariate interpolation.  

Given a simulated correlated PGA (denoted as 𝑘𝑘1) and PGV (denoted as 𝑘𝑘2) realization 𝑔𝑔 at 𝐽𝐽 
sites, the estimated or interpolated ground motions for 𝑘𝑘1 and 𝑘𝑘2 at a new site 𝑗𝑗0 can be written as  

�
𝑧̂𝑧𝑘𝑘1,𝑗𝑗0
𝑧̂𝑧𝑘𝑘2,𝑗𝑗0

� = �
𝜇̂𝜇𝑘𝑘1,𝑗𝑗0
𝜇̂𝜇𝑘𝑘2,𝑗𝑗0

� + �
𝜂𝜂�𝑘𝑘1
𝜂𝜂�𝑘𝑘2

� + �
𝛿𝛿𝛿𝛿�𝑘𝑘1,𝑗𝑗0

𝛿𝛿𝛿𝛿�𝑘𝑘2,𝑗𝑗0
�  (5.9) 

where 𝑧̂𝑧𝑘𝑘1,𝑗𝑗0 is the interpolated ground motion for 𝑘𝑘1 at a new site 𝑗𝑗0, which is the sum of median 
logarithmic ground motion 𝜇̂𝜇𝑘𝑘1,𝑗𝑗0 (predicted by a GMM), event term 𝜂𝜂�𝑘𝑘1 (the same simulated value 
used by the other simulated 𝐽𝐽 sites), and interpolated within event residual 𝛿𝛿𝛿𝛿�𝑘𝑘1,𝑗𝑗0 (different from 
the simulated 𝜹𝜹𝜹𝜹� 𝒌𝒌𝟏𝟏  at other 𝐽𝐽 sites). The second row for 𝑧̂𝑧𝑘𝑘2,𝑗𝑗0 is evaluated in the same manner. 
For the interpolated within event residual, we need to solve a Co-Kriging system, 

𝚺𝚺𝒘𝒘 = 𝒄𝒄  (5.10) 

where  
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𝚺𝚺 = �

𝚺𝚺𝒌𝒌𝟏𝟏 𝚺𝚺𝒌𝒌𝟏𝟏,𝒌𝒌𝟐𝟐 𝟏𝟏 𝟎𝟎
𝚺𝚺𝒌𝒌𝟐𝟐,𝒌𝒌𝟏𝟏 𝚺𝚺𝒌𝒌𝟐𝟐 𝟎𝟎 𝟏𝟏
𝟏𝟏𝑇𝑇
𝟎𝟎𝑇𝑇

𝟎𝟎𝑇𝑇
𝟏𝟏𝑇𝑇

0 0
0 0

�  (5.11) 

is the covariance matrix of PGA and PGV within event residuals among the given 𝐽𝐽 sites, which 
contains the 𝚺𝚺𝒌𝒌𝟏𝟏 and 𝚺𝚺𝒌𝒌𝟐𝟐 terms defined in Eq. (4.14) in Chapter 4.1 and vectors of 𝟏𝟏 (a column 
vector of 𝐽𝐽 elements all equal to 1), 𝟎𝟎 (a column vector of 𝐽𝐽 elements all equal to 0), 𝟏𝟏𝑇𝑇 (a row 
vector of 𝐽𝐽 elements all equal to 1), 𝟎𝟎𝑇𝑇 (a row vector of 𝐽𝐽 elements all equal to 0), and scalars 0. 
The 𝒘𝒘 weight vector in Eq. (5.10) is defined as 

𝒘𝒘 =

⎣
⎢
⎢
⎡
𝒘𝒘𝒌𝒌𝟏𝟏
𝒘𝒘𝒌𝒌𝟐𝟐
−𝜆𝜆𝑘𝑘1
−𝜆𝜆𝑘𝑘2⎦

⎥
⎥
⎤
  (5.12) 

where 𝒘𝒘𝒌𝒌𝟏𝟏 = �𝑤𝑤𝑘𝑘1,1,𝑤𝑤𝑘𝑘1,2,⋯ ,𝑤𝑤𝑘𝑘1,𝐽𝐽� and 𝒘𝒘𝒌𝒌𝟐𝟐 = �𝑤𝑤𝑘𝑘2,1,𝑤𝑤𝑘𝑘2,2,⋯ ,𝑤𝑤𝑘𝑘2,𝐽𝐽� for 𝜹𝜹𝜹𝜹� 𝒌𝒌𝟏𝟏  and 𝜹𝜹𝜹𝜹� 𝒌𝒌𝟐𝟐  at 𝐽𝐽 
sites respectively to interpolate  𝛿𝛿𝛿𝛿�𝑘𝑘1,𝑗𝑗0, and 𝜆𝜆𝑘𝑘1 and 𝜆𝜆𝑘𝑘2 are Lagrange multipliers (that will not 
be used in interpolation). The covariance vector 𝒄𝒄 in Eq. (5.10) is defined as,  

𝒄𝒄 = �

𝒄𝒄𝒌𝒌𝟏𝟏(𝑗𝑗0)
𝒄𝒄𝒌𝒌𝟐𝟐(𝑗𝑗0)

1
0

�  (5.13) 

where 𝒄𝒄𝒌𝒌𝟏𝟏(𝑗𝑗0) is the covariance between the new site 𝑗𝑗0 and simulated 𝐽𝐽 sites for 𝑘𝑘1 and 𝒄𝒄𝒌𝒌𝟐𝟐(𝑗𝑗0) is 
the covariance between the new site 𝑗𝑗0 and simulated 𝐽𝐽 sites for 𝑘𝑘2. By using the developed spatial 
and cross-IMs correlation model (e.g., Loth and Baker, 2013), we can establish 𝚺𝚺 and 𝒄𝒄 and then 
solve for the weight vector 𝒘𝒘 by,  

𝒘𝒘 = 𝚺𝚺−1𝒄𝒄  (5.14) 

where the exponent −1 of 𝚺𝚺 indicates inverse of the matrix. Once the weight vector is solved, we 
can interpolate within event residual 𝛿𝛿𝛿𝛿�𝑘𝑘1,𝑗𝑗0 for 𝑘𝑘1 at the new site 𝑗𝑗0 as, 

𝛿𝛿𝛿𝛿�𝑘𝑘1,𝑗𝑗0 = ∑ 𝛿𝛿𝛿𝛿�𝑘𝑘1,𝑗𝑗𝑤𝑤𝑘𝑘1,𝑗𝑗
𝑗𝑗=𝐽𝐽
𝑗𝑗=0 + ∑ 𝛿𝛿𝛿𝛿�𝑘𝑘2,𝑗𝑗𝑤𝑤𝑘𝑘2,𝑗𝑗

𝑗𝑗=𝐽𝐽
𝑗𝑗=0  (5.15) 

After that, we need to switch the position of the corresponding covariances for 𝑘𝑘1 and 𝑘𝑘2 in Eqs. 
(5.11) and (5.13) to obtain a new 𝚺𝚺 and 𝒄𝒄 and solve a new weight vector 𝒘𝒘. The new weight vector 
𝒘𝒘  can be entered into Eq. (5.15) again to interpolate within event residual 𝛿𝛿𝛿𝛿�𝑘𝑘2,𝑗𝑗0  for 𝑘𝑘2 . 
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Following this co-Kriging interpolation method, we loop across each grid point to obtain high-
resolution correlated maps.  

One final step before finalizing the ground motion realizations is correcting for site effects. 
The PSHA results and subsequent steps were all based on reference site conditions (i.e., VS30 = 760 
m/s). Therefore, we need to estimate site-specific VS30 and apply site amplification to obtain the 
ground motions that reflect local site conditions. Site-specific VS30 values were estimated using 
multiple proxy-based approaches, including topographic slope (Wald and Allen, 2007), 
geomorphic terrain classifications (Yong et al., 2012; Yong, 2016), surface geology (Wills et al., 
2015), and a Kriging-based interpolated map (Thompson et al., 2014; Thompson, 2018). The 
manner in which these proxies are combined is described by Wang (2020). For the site 
amplification correction, we adapt the ergodic site response model by Seyhan and Stewart (2014), 
which includes both linear (Flin) and nonlinear (Fnl) site responses.  

Figures 5.11 and 5.12 show the fifth out of 25 selected correlated PGA and PGV interpolated 
maps. The event considered in scenario 5 is a multi-fault rupture with a magnitude of 8.02. The 
participating faults include the Ft. Tejon segment of the San Andreas Fault (in the north-south 
direction) and the Garlock fault (in the east-west direction). The corrected hazard-consistent annual 
occurrence rate for the map is 0.0005474  (the annual occurrence rate of this selected event is 
2.27E-08 originally modeled in UCERF3 and is corrected to 0.0003005 for hazard-consistency in 
the subset of selected events). All 25 maps and their associated metadata can be found in a shared 
OneDrive folder1.  

 

 
1 https://olddominion-
my.sharepoint.com/:f:/g/personal/p1wang_odu_edu/EqPt2q8qMmBDsksyaLcMuq4B1FZwrOc39zAe_kTliUr
pjQ?e=ohgxk2 
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Figure 5.11. Spatial correlated PGA map, the 5th out of 25 selected maps (corrected hazard-
consistent annual occurrence rate is 0.0005474) 

 

Figure 5.12. Spatial correlated PGV map, the 5th out of 25 selected maps (corrected hazard-
consistent annual occurrence rate is 0.0005474). 
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6 Summary 

6.1 Conclusion 

In this report, we have presented efficient LASSO regression-based methods for the selection of 
scenario events and correlated ground motion realizations, which are useful for seismic risk 
assessments of spatially distributed infrastructure. The methods have the flexibility of matching 
hazard curves across multiple sites and for multiple intensity measures or alternatively for those 
objectives combined while preserving the magnitude and distance marginal distributions from 
disaggregation. The framework provides a series of possible results for alternate values of tuning 
parameter γ, which gives the user the flexibility to select their preferred subset of events or 
realizations in consideration of fit error.  

The proposed method was applied to select correlated multi-IMs (PGA and PGV) realizations 
for statewide natural gas pipelines. To reduce the computation demand, 1,220 target sites close to 
the pipelines were selected as the hazard control target sites. Taking the conventional point-based 
PSHA results as input (completed by Al Atik et al., 2022), we first pre-selected 7,700 important 
scenarios based on disaggregations and then conducted LASSO regression to select 599 scenario 
events that achieve hazard-consistency and preserve the magnitude marginal distributions from 
disaggregations. We then generated 50 correlated PGA and PGV maps for each of the 599 selected 
events, which resulted in 29,950 realizations. After ground motion realization conversion and 
tensor transformation, these realizations were formulated as a hazard matrix that can be 
incorporated into LASSO regression for selection. Given computation constraints in subsequent 
geo-hazard analyses, 25 correlated PGA and PGV realizations were selected together with their 
hazard-consistent annual occurrence rates. Co-Kriging and site amplification corrections were 
implemented to interpolate and obtain high-resolution correlated ground motion maps under site-
specific conditions. A publicly accessible self-contained R package was also developed to perform 
the necessary calculations. 

6.2 Limitations  

The application of the methodologies presented in this report has several limitations, as follows:   
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1. The hazard-consistent events and correlated maps were conducted based on 1,220 target 
sites close to pipelines, not 19,316 sites evenly distributed throughout the state. As a result, 
the selected events and ground motion spatial realizations are best suited for seismic 
assessment of the pipelines and may not be applicable to any other regions in the state.  

2. Only PGA and PGV, two IMs, and a relatively narrow return period range (from 200 to 
2,475 years) were considered for event and realization selection. If other IMs or return 
periods are required, the selected maps may not be applicable. 

3. Given the computation constraints in the subsequent geo-hazard analyses, only a maximum 
of 25 maps were selected. As a result, the hazard curve mismatches are relatively large. 
These mismatches likely inflate uncertainties in subsequent seismic risk assessments.  

4. Magnitude and distance marginal distributions from disaggregations were not considered 
in ground motion realization selection, so the fitting could be poor. Therefore, the selected 
maps may produce some biases for applications that require preserving marginal 
distributions of either magnitude or distance.  

6.3 Future Work  

Future work can overcome the limitations described in Chapter 6.2. Such work could include:  

1. Validation to check if hazard can be preserved at sites that are not incorporated in the 
LASSO regression. We anticipate the hazard preservation may be acceptable if the sites 
are relatively close to the target sites within a distance threshold (e.g., 5 km), but the 
mismatch will grow with increasing distance. To better manage the selection of statewide 
target sites (not just for pipelines), we need to understand the relation between the hazard 
mismatch and distance.  

2. Different future applications are likely to require different IMs and return periods than 
those considered here. Accordingly, further study is needed to investigate how to 
efficiently select correlated multi-IMs realizations for a broader return period range. For 
example, how much the mismatch of PSA at 1 second is if we only match PGA and PGV?  

3. It is almost impossible to use a small set of maps to preserve both hazard curves and 
disaggregations well for a large region. More selected maps are mandatory to improve the 
accuracy of final seismic risk analysis. If future work of the geo-hazards group can 
consider a larger number of ground motion realizations, this can be provided.  

4. LASSO regression is a very efficient method to conduct selection with a large number of 
inputs. However, we are still limited to incorporating magnitude and distance marginal 
distributions when selecting correlated maps. We will investigate if there exists more 
efficient LASSO solvers or different implementation approaches to allow more inputs.  
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